如圖,AB是⊙O的直徑,點(diǎn)D在⊙O上,∠BAD=35°,過(guò)點(diǎn)D作⊙O的切線(xiàn)交AB的延長(zhǎng)線(xiàn)于點(diǎn)C,則∠C=______度.
連接OD,
∵CD是⊙O的切線(xiàn),
∴OD⊥CD,
∵∠COD=2∠BAD=2×35°=70°,
∴∠C=90°-∠COD=20°.
故答案為:20.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖所示,△ABC中,AB=AC=5,BC=8,以A為圓心,3cm長(zhǎng)為半徑的圓與直線(xiàn)BC的關(guān)系是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,△ABC中,CA=CB,點(diǎn)D為AC的中點(diǎn),以AD為直徑的⊙O切BC于點(diǎn)E,AD=2.
(1)求BE的長(zhǎng);
(2)過(guò)點(diǎn)D作DFBC交⊙O于點(diǎn)F,求DF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(0,10),點(diǎn)B的坐標(biāo)為(5,0),點(diǎn)P從A開(kāi)始在線(xiàn)段AO上以3單位/秒的速度移動(dòng),點(diǎn)Q從B開(kāi)始在線(xiàn)段BO上以1單位/秒的速度移動(dòng),當(dāng)其中一個(gè)點(diǎn)到達(dá)O時(shí),另一點(diǎn)也隨即停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t(秒).以P、Q為圓心作⊙P和⊙Q,且⊙P和⊙Q的半徑分別為4和1.
(1)在運(yùn)動(dòng)的過(guò)程中若⊙P與Rt△AOB的一邊相切,求此時(shí)動(dòng)點(diǎn)P的坐標(biāo);
(2)若⊙P與線(xiàn)段AB有兩個(gè)公共點(diǎn),求t的范圍;
(3)在運(yùn)動(dòng)的過(guò)程中,是否存在某一時(shí)刻⊙P和⊙Q相切?若存在,求出t的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,AB是⊙O的直徑,直線(xiàn)CD與⊙O相切于點(diǎn)C,AC平分∠DAB.
(1)試判斷直線(xiàn)AD與CD的位置關(guān)系,并說(shuō)明理由;
(2)連接BC,若AD=2,AC=
5
,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于點(diǎn)E,點(diǎn)D在AB上,DE⊥EB.
(1)求證:AC是△BDE的外接圓的切線(xiàn);
(2)若AD=2
6
,AE=6
2
,求BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,PA、PB是⊙O的切線(xiàn),切點(diǎn)為A、B,若∠OAB=30°,則∠P的度數(shù)為(  )
A.60°B.90°C.120°D.無(wú)法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

一副斜邊相等的直角三角板(∠DAC=45°,∠BAC=30°),按如圖所示的方式在平面內(nèi)拼成一個(gè)四邊形.
(1)A,B,C,D四點(diǎn)在同一個(gè)圓上嗎?如果在,請(qǐng)寫(xiě)出證明過(guò)程;如果不在,請(qǐng)說(shuō)明理由;
(2)過(guò)點(diǎn)D作直線(xiàn)lAC,求證:l是這個(gè)圓的切線(xiàn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知PAB是⊙O的割線(xiàn),AB為⊙O的直徑,PC為⊙O的切線(xiàn),C為切點(diǎn),BD⊥PC于點(diǎn)D,交⊙O于點(diǎn)E,PA=AO=OB=1.
(Ⅰ)求∠P的度數(shù);
(Ⅱ)求DE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案