【題目】如圖,四邊形ABCD中,AC=BC=BD,且AC⊥BD,若AB=a,則△ABD的面積為_____.(用含a的式子表示)
【答案】a2
【解析】
由“AAS”可證△BDE≌△CBF,可得BF=ED=,由三角形面積公式可求解.
解:過(guò)D作DE⊥AB交BA的延長(zhǎng)線(xiàn)于E,過(guò)C作CF⊥AB交AB于F,
∵AC⊥BD,CF⊥AB,
∴∠ACF+∠FAC=90°,∠ABD+∠BAC=90°,
∴∠ACF=∠ABD
∵AC=BC,CF⊥AB,
∴AF=BF=,∠ACF=∠BCF
∴∠ABD=∠BCF,
∵∠DEB=∠AFC=90°,∠ABD=∠BCF,BC=BD
∴△BDE≌△CBF(AAS)
∴BF=ED=,
∴△ABD的面積=×AB×DE=a2,
故答案為a2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工廠甲、乙兩個(gè)車(chē)間各有工人200人,為了解這兩個(gè)車(chē)間工人的生產(chǎn)技能情況,進(jìn)行了抽樣調(diào)查,過(guò)程如下,請(qǐng)補(bǔ)充完整.
收集數(shù)據(jù)從甲、乙兩個(gè)車(chē)間各抽取20名工人進(jìn)行生產(chǎn)技能測(cè)試,測(cè)試成績(jī)?nèi)缦拢?/span>
甲:78 86 74 85 75 76 87 70 75 90 75 79 81 70 74 80 86 69 83 77
乙:93 67 88 81 72 81 94 83 77 83 80 81 64 81 73 78 82 80 70 52
整理數(shù)據(jù)按如下分?jǐn)?shù)段整理、描述這兩組樣本數(shù)據(jù):
50≤x≤59 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤99 | |
甲 | 0 | _____ | 11 | ______ | 1 |
乙 | 1 | 2 | 5 | 10 | ______ |
(說(shuō)明:成績(jī)80分及以上為生產(chǎn)技能優(yōu)秀,70~79分為生產(chǎn)技能良好,60~69分為生產(chǎn)技能合格,60分以下為生產(chǎn)技能不合格)
分析數(shù)據(jù)兩組樣本數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)如表所示:
平均數(shù) | 中位數(shù) | 眾數(shù) | |
甲 | _____ | 77.5 | 75 |
乙 | 78 | _____ | ______ |
得出結(jié)論可以推斷_____車(chē)間工人的生產(chǎn)技能水平較高,理由為______.(至少?gòu)膬蓚(gè)角度說(shuō)明推斷的合理性)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程有兩個(gè)不相等的實(shí)數(shù)根,.
求a的取值范圍;
是否存在實(shí)數(shù)a,使方程的兩個(gè)實(shí)數(shù)根互為相反數(shù)?如果存在,求出a的值;如果不存在,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠BDA=∠CDA,則不一定能使△ABD≌△ACD的條件是( 。
A. BD=DC B. AB=AC C. ∠B=∠C D. ∠BAD=∠CAD
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是的直徑,點(diǎn)、在上且,連接、,過(guò)點(diǎn)作交的延長(zhǎng)線(xiàn)于點(diǎn).
求證:是的切線(xiàn);
若,,求的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,AH⊥BC,垂足為H,D為直線(xiàn)BC上一動(dòng)點(diǎn)(不與點(diǎn)BC重合),在AD的右側(cè)作△ADE,使得AE=AD,∠DAE=∠BAC,連接CE.
(1)當(dāng)D在線(xiàn)段BC上時(shí),求證:△BAD≌△CAE;
(2)當(dāng)點(diǎn)D運(yùn)動(dòng)到何處時(shí),AC⊥DE,并說(shuō)明理由;
(3)當(dāng)CE∥AB時(shí),若△ABD中最小角為20°,試探究∠ADB的度數(shù)(直接寫(xiě)出結(jié)果,無(wú)需寫(xiě)出求解過(guò)程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC的三個(gè)頂點(diǎn)分別為, , .若反比例函數(shù)在第一象限內(nèi)的圖象與△ABC有公共點(diǎn),則k的取值范圍是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是小明同學(xué)設(shè)計(jì)的“已知底邊及底邊上的中線(xiàn)作等腰三角形”的尺規(guī)作圖過(guò)程.
已知:如圖 1,線(xiàn)段 a 和線(xiàn)段 b.
求作:△ABC,使得 AB = AC,BC = a,BC 邊上的中線(xiàn)為 b.
作法:如圖 ,
① 作射線(xiàn) BM,并在射線(xiàn) BM 上截取 BC = a;
② 作線(xiàn)段 BC 的垂直平分線(xiàn) PQ,PQ 交 BC 于 D;
③ 以 D 為圓心,b 為半徑作弧,交 PQ 于 A;
④ 連接 AB 和 AC.
則△ABC 為所求作的圖形.
根據(jù)上述作圖過(guò)程,回答問(wèn)題:
(1)用直尺和圓規(guī),補(bǔ)全圖 2 中的圖形;
(2)完成下面的證明:
證明:由作圖可知 BC = a,AD = b.
∵ PQ 為線(xiàn)段 BC 的垂直平分線(xiàn),點(diǎn) A 在 PQ 上,
∴ AB = AC( )(填依據(jù)).
又∵線(xiàn)段 BC 的垂直平分線(xiàn) PQ 交 BC 于 D,
∴ BD=CD.( )(填依據(jù)).
∴ AD 為 BC 邊上的中線(xiàn),且 AD = b.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com