精英家教網 > 初中數學 > 題目詳情
9.如圖,已知AB∥CD,下列各角之間的關系一定成立的是( 。
A.∠1=∠3B.∠2=∠4C.∠1>∠4D.∠3+∠5=180°

分析 根據平行線的性質即可得到結論.

解答 解:∵AB∥CD,
∴∠1=∠4,∠2+∠4=180°,∠3+∠5=180°,
故選D.

點評 此題主要考查了平行線的性質,關鍵是掌握兩直線平行,同旁內角互補.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:填空題

19.一個不透明的袋中裝有紅、黃、白三種顏色的球共100個,它們除顏色外都相同,其中黃球個數比白球個數的2倍少5個,已知從袋中摸出一個球是紅球的概率是$\frac{3}{10}$,則從袋中摸出一個球是白球的概率是$\frac{1}{4}$.

查看答案和解析>>

科目:初中數學 來源: 題型:填空題

20.在△ABC中,∠C=90°,sinA=$\frac{1}{4}$,則tanB=$\sqrt{15}$.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

17.如圖,△ABC中,∠ACB=90°,∠A=30°,CD為△ABC的中線,作CO⊥AB于O,點E在CO延長線上,DE=AD,連接BE、DE.

(1)求證:四邊形BCDE為菱形;
(2)把△ABC分割成三個全等的三角形,需要兩條分割線段,若AC=6,求兩條分割線段長度的和.

查看答案和解析>>

科目:初中數學 來源: 題型:解答題

4.如圖,在平面直角坐標系中,已知拋物線y=ax2+bx-8與x軸交于A,B兩點,與y軸交于點C,直線l經過坐標原點O,與拋物線的一個交點為D,與拋物線的對稱軸交于點E,連接CE,已知點A,D的坐標分別為(-2,0),(6,-8).
(1)求拋物線的函數表達式,并分別求出點B和點E的坐標;
(2)試探究拋物線上是否存在點F,使△FOE≌△FCE?若存在,請直接寫出點F的坐標;若不存在,請說明理由;
(3)若點P是y軸負半軸上的一個動點,設其坐標為(0,m),直線PB與直線l交于點Q,試探究:當m為何值時,△OPQ是等腰三角形.
(4)若F點坐標為(4,0),OF繞點O順時針旋轉得到OF′,旋轉角為α(0°<α<90°),連接F′B、F′C,求2F′B+F′C的最小值.

查看答案和解析>>

科目:初中數學 來源: 題型:填空題

14.如圖,點C是線段AB上一點,且AC=4cm,BC=1cm,若點O為線段AB的中點,則線段OC的長為$\frac{3}{2}$cm.

查看答案和解析>>

科目:初中數學 來源: 題型:選擇題

1.已知|x|=3,y2=4,且x+y<0,則x-y的值等于( 。
A.-5B.-1C.±5D.-5或-1

查看答案和解析>>

科目:初中數學 來源: 題型:選擇題

18.下列三組線段能組成三角形的是(  )
A.1,2,3B.2,2,4C.3,4,5D.4,4,10

查看答案和解析>>

科目:初中數學 來源: 題型:選擇題

19.如果水位升高7m時水位變化記作+7m,那么水位下降4m時水位變化記作( 。
A.-3mB.3mC.-4mD.10m

查看答案和解析>>

同步練習冊答案