【題目】小李經(jīng)營一家水果店,某日到水果批發(fā)市場(chǎng)批發(fā)一種水果.經(jīng)了解,一次性批發(fā)這種水果不得少于,超過時(shí),所有這種水果的批發(fā)單價(jià)均為3.圖中折線表示批發(fā)單價(jià)(元)與質(zhì)量的函數(shù)關(guān)系.

1)求圖中線段所在直線的函數(shù)表達(dá)式;

2)小李用800元一次可以批發(fā)這種水果的質(zhì)量是多少?

【答案】(1);(2)小李用800元一次可以批發(fā)這種水果的質(zhì)量是200千克.

【解析】

1)設(shè)線段所在直線的函數(shù)表達(dá)式為,運(yùn)用待定系數(shù)法即可求解;

2)設(shè)小李共批發(fā)水果千克,則單價(jià)為,根據(jù)“單價(jià)、數(shù)量與總價(jià)的關(guān)系列方程解答即可”.

1)設(shè)線段所在直線的函數(shù)表達(dá)式為,根據(jù)題意得,

,解得,

∴線段所在直線的函數(shù)表達(dá)式為;

2)設(shè)小李共批發(fā)水果千克,則單價(jià)為,

根據(jù)題意得:,

解得400,

經(jīng)檢驗(yàn),(不合題意,舍去)都是原方程的根.

答:小李用800元一次可以批發(fā)這種水果的質(zhì)量是200千克.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩地相距300千米,一輛貨車和一輛轎車先后從甲地出發(fā)駛向乙地,如圖,線段OA表示貨車離甲地距離y(千米)與時(shí)間x(小時(shí))之間的函數(shù)關(guān)系;折線OBCDA表示轎車離甲地距離y(千米)與時(shí)間x(小時(shí))之間的函數(shù)關(guān)系.請(qǐng)根據(jù)圖象解答下列問題:

1)當(dāng)轎車剛到乙地時(shí),此時(shí)貨車距離乙地   千米;

2)當(dāng)轎車與貨車相遇時(shí),求此時(shí)x的值;

3)在兩車行駛過程中,當(dāng)轎車與貨車相距20千米時(shí),求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤中,指針位置固定,三個(gè)扇形的面積都相等,且分別標(biāo)有數(shù)字1,23

1)小明轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),指針?biāo)干刃沃械臄?shù)字是奇數(shù)的概率為   ;

2)小明先轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),記錄下指針?biāo)干刃沃械臄?shù)字;接著再轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),再次記錄下指針?biāo)干刃沃械臄?shù)字,求這兩個(gè)數(shù)字之和是3的倍數(shù)的概率(用畫樹狀圖或列表等方法求解).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以下是通過折疊正方形紙片得到等邊三角形的步驟取一張正方形的紙片進(jìn)行折疊,具體操作過程如下:

第一步:如圖先把正方形ABCD對(duì)折,折痕為MN;

第二步點(diǎn)E在線段MD上,將△ECD沿EC翻折,點(diǎn)D恰好落在MN上,記為點(diǎn)P,連接BP可得△BCP是等邊三角形

問題:在折疊過程中,可以得到PB=PC;依據(jù)是________________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等腰△ABC,∠ACB=120°,P是線段CB上一動(dòng)點(diǎn)(與點(diǎn)CB不重合),連接AP,延長BC至點(diǎn)Q,使得∠PAC=QAC,過點(diǎn)Q作射線QH交線段APH,交AB于點(diǎn)M,使得∠AHQ=60°.

1)若∠PAC,求∠AMQ的大。ㄓ煤α的式子表示);

2)用等式表示線段QCBM之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形的邊長為,點(diǎn)邊的中點(diǎn),點(diǎn)邊上一動(dòng)點(diǎn)(不含端點(diǎn)),,與直線交于

求證:

試寫出之間的函數(shù)關(guān)系式.

的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形中,,延長至點(diǎn),使得過點(diǎn),交線段于點(diǎn).設(shè)

1)連結(jié),請(qǐng)求出的度數(shù)和的半徑(的代數(shù)式表示) (直接寫出答案)

2)證明:點(diǎn)的中點(diǎn).

3)如圖2,延長至點(diǎn),使得, 連結(jié),于點(diǎn)

①連結(jié),當(dāng)與四邊形其它三邊中的一邊相等時(shí),請(qǐng)求出所有滿足條件的的值.

②當(dāng)點(diǎn)關(guān)于直線對(duì)稱點(diǎn)恰好落在上,連結(jié).記的面積分別為,請(qǐng)直接寫出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中的每個(gè)小正方形邊長都是個(gè)單位長度,的頂點(diǎn)均在格點(diǎn)上.建立平面直角坐標(biāo)系后,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為

1)先將向左平移個(gè)單位長度,再向下平移個(gè)單位長度得到(點(diǎn)、的對(duì)應(yīng)點(diǎn)分別為、、),請(qǐng)?jiān)趫D中畫出

2)再將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)后得到(點(diǎn)、、的對(duì)應(yīng)點(diǎn)分別為、),試在圖中畫出,并直接寫出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某縣為落實(shí)“精準(zhǔn)扶貧惠民政策”,計(jì)劃將某村的居民自來水管道進(jìn)行改造.該工程若由甲隊(duì)單獨(dú)施工恰好在規(guī)定時(shí)間內(nèi)完成;若乙隊(duì)單獨(dú)施工,則完成工程所需天數(shù)是規(guī)定天數(shù)的15倍.如果由甲、乙隊(duì)先合作施工15天,那么余下的工程由甲隊(duì)單獨(dú)完成還需5天.

(1)這項(xiàng)工程的規(guī)定時(shí)間是多少天?

(2)為了縮短工期以減少對(duì)居民用水的影響,工程指揮部最終決定該工程由甲、乙兩隊(duì)合作完成.則甲、乙兩隊(duì)合作完成該工程需要多少天?

查看答案和解析>>

同步練習(xí)冊(cè)答案