精英家教網 > 初中數學 > 題目詳情

【題目】如圖,一個寬為2cm的刻度尺在圓形光盤上移動,當刻度尺的一邊與光盤相切時,另一邊與光盤邊緣兩個交點處的讀數恰好是“2”和“10”(單位:cm),求該光盤的直徑是多少?

【答案】解:過點O作OA垂直直尺與點A,連接OB,設OB=r,
∵一邊與光盤邊緣兩個交點處的讀數恰好是“2”和“10”,
∴AB=4,
∵刻度尺寬2cm,
∴OA=r﹣2,
在Rt△OAB中,
OA2+AB2=OB2 , 即(r﹣2)2+42=r2 ,
解得r=5,
則該光盤的直徑是10cm.

【解析】先過點O作OA垂直直尺與點A,連接OB,再設OB=r,利用勾股定理求出r的值即可得出答案.
【考點精析】本題主要考查了勾股定理的概念和垂徑定理的推論的相關知識點,需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;推論1:A、平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧B、弦的垂直平分線經過圓心,并且平分弦所對的兩條弧C、平分弦所對的一條弧的直徑,垂直平分弦,并且平分弦所對的另一條。煌普2 :圓的兩條平行弦所夾的弧相等才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,P是等邊△ABC內的一點,且PA=5,PB=4,PC=3,將△APB繞點B逆時針旋轉,得到△CQB.求:

(1)點P與點Q之間的距離;
(2)求∠BPC的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,平行四邊形ABCD中,E,F分別為AD,BC邊上的一點,增加下列條件,不能得出BEDF的是( 。

A. AE=CF B. BE=DF C. ∠EBF=∠FDE D. ∠BED=∠BFD

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC內接于⊙O,∠B=60°,CD是⊙O的直徑,點P是CD延長線上的一點,且AP=AC.

(1)求證:PA是⊙O的切線;
(2)若AB=4+ ,BC=2 ,求⊙O的半徑.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】我們規(guī)定:平面內點A到圖形G上各個點的距離的最小值稱為該點到這個圖形的最小距離d,點A到圖形G上各個點的距離的最大值稱為該點到這個圖形的最大距離D,定義點A到圖形G的距離跨度為R=D﹣d.
(1)①如圖1,在平面直角坐標系xOy中,圖形G1為以O為圓心,2為半徑的圓,直接寫出以下各點到圖形G1的距離跨度:
A(﹣1,0)的距離跨度;
B( ,﹣ )的距離跨度
C(﹣3,2)的距離跨度
②根據①中的結果,猜想到圖形G1的距離跨度為2的所有的點組成的圖形的形狀是

(2)如圖2,在平面直角坐標系xOy中,圖形G2為以C(1,0)為圓心,2為半徑的圓,直線y=k(x+1)上存在到G2的距離跨度為2的點,求k的取值范圍.

(3)如圖3,在平面直角坐標系xOy中,射線OA:y= x(x≥0),圓C是以3為半徑的圓,且圓心C在x軸上運動,若射線OA上存在點到圓C的距離跨度為2,直接寫出圓心C的橫坐標xc的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,⊙O的半徑是5cm,PA、PB切⊙O于點A、B兩點,∠PAB=60°.求AB的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】學校要圍一個矩形花圃,其一邊利用足夠長的墻,另三邊用籬笆圍成,由于園藝需要,還要用一段籬笆將花圃分隔為兩個小矩形部分(如圖所示),總共36米的籬笆恰好用完(不考慮損耗).設矩形垂直于墻面的一邊AB的長為x米(要求AB<AD),矩形花圃ABCD的面積為S平方米.

(1)求S與x之間的函數關系式,并直接寫出自變量x的取值范圍;
(2)要想使矩形花圃ABCD的面積最大,AB邊的長應為多少米?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,對角線BD的垂直平分線MNAD相交于點M,與BD相交于點N,連接BM,DN

1)求證:四邊形BMDN是菱形;

2)若AB=4,AD=8,求MD的長

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】正方形ABCD,FAB上一點HBC延長線上一點,連接FHFBH沿FH翻折,使點B的對應點E落在ADEHCD交于點G,連接BGFH于點MGB平分CGE,BM=2,AE=8ED=______

查看答案和解析>>

同步練習冊答案