【題目】下列說法中不正確的是( )

A.拋擲一枚硬幣,硬幣落地時正面朝上是隨機事件

B.4個球放入三個抽屜中,其中一個抽屜中至少有2個球是必然事件

C.一個盒子中有白球個,紅球6個,黑球個(每個球除了顏色外都相同).如果從中任取一個球,取得的是紅球的概率與不是紅球的概率相同,那么的和是6

D.任意打開七年級下冊數(shù)學教科書,正好是100頁是確定事件

【答案】D

【解析】

利用概率的意義以及隨機事件和確定事件的定義分別分析得出答案.

A.拋擲一枚硬幣,硬幣落地時正面朝上是隨機事件,正確不合題意;
B.把4個球放入三個抽屜中,其中一個抽屜中至少有2個球是必然事件,正確不合題意;
C.一個盒子中有白球m個,紅球6個,黑球n個(每個球除了顏色外都相同),
如果從中任取一個球,取得的是紅球的概率與不是紅球的概率相同,那么mn6,正確不合題意;
D.任意打開七年級下冊數(shù)學教科書,正好是100頁是不確定事件,故此選項錯誤符合題意.
故選:D

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】綠水青山就是金山銀山的理念已融入人們的日常生活中,因此,越來越多的人喜歡騎自行車出行.某自行車店在銷售某型號自行車時,以高出進價的50%標價.已知按標價九折銷售該型號自行車8輛與將標價直降100元銷售7輛獲利相同.

(1)求該型號自行車的進價和標價分別是多少元?

(2)若該型號自行車的進價不變,按(1)中的標價出售,該店平均每月可售出51輛;若每輛自行車每降價20元,每月可多售出3輛,求該型號自行車降價多少元時,每月獲利最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(2017江蘇省連云港市)如圖,已知等邊三角形OAB與反比例函數(shù)k>0,x>0)的圖象交于A、B兩點,將OAB沿直線OB翻折,得到OCB,點A的對應點為點C,線段CBx軸于點D,則的值為____.(已知sin15°=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本題滿分8分)

如圖,點E,F在BC上,BE=CF,A=D,B=C,AF與DE交于點O.

(1)求證:AB=DC;

(2)試判斷OEF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,∠ACB=90°,CD是∠ACB的平分線,點P在CD上,CP=.將三角板的直角頂點放置在點P處,繞著點P旋轉(zhuǎn),三角板的一條直角邊與射線CB交于點E,另一條直角邊與直線CA、直線CB分別交于點F、點G.

(1)如圖,當點F在射線CA上時,

求證:PF=PE.

設(shè)CF=x,EG=y(tǒng),求y與x的函數(shù)解析式并寫出函數(shù)的定義域.

(2)連接EF,當△CEF與△EGP相似時,求EG的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知EF、GH分別為菱形ABCD四邊的中點,AB=6cm,ABC=60°,則四邊形EFGH的面積為__cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知CD⊥ABD,現(xiàn)有四個條件:①AD=ED ②∠A=∠BED ③∠C=∠B ④AC=EB,那么不能得出△ADC≌△EDB的條件是( .

A.①③B.②④

C.①④D.②③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小東根據(jù)學習函數(shù)的經(jīng)驗,對函數(shù)的圖象與性質(zhì)進行了探究.下面是小東的探究過程,請補充完整,并解決相關(guān)問題:

(1)函數(shù)的自變量x的取值范圍是

(2)下表是yx的幾組對應值.

x

0

1

2

3

4

y

2

4

2

m

表中m的值為________________;

(3)如圖,在平面直角坐標系中,描出了以上表中各對對應值為坐標的點. 根據(jù)描出的點,畫出函數(shù)的大致圖象;

(4)結(jié)合函數(shù)圖象,請寫出函數(shù)的一條性質(zhì):______________________.

(5)解決問題:如果函數(shù)與直線y=a的交點有2個,那么a的取值范圍是______________ .

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,我們把對角線互相垂直的四邊形叫做對垂四邊形.

觀察發(fā)現(xiàn):如圖1,對垂四邊形ABCD四邊存在數(shù)量為: AD2+BC2AB2+CD2

應用發(fā)現(xiàn):如圖2,若AE,BDABC的中線,AEBD,垂足為O,AC=4,BC=6,求AB=

應用知識:如圖3,分別以RtACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連接CE,BG,GE,已知AC,ABGE長.

拓展應用:如圖4,在平行四邊形ABCD中,點E、F、G分別是AD,BCCD的中點,BEEG,AD=4,AB=3,求AF的長

查看答案和解析>>

同步練習冊答案