【題目】如圖所示,⊙O的直徑AB10cm,弦AC6cm,∠ACB的平分線交⊙OD,求BC,AD,BD的長(zhǎng).

【答案】5

【解析】試題分析:根據(jù)直徑所對(duì)的角是90°,判斷出△ABC△ABD是直角三角形,根據(jù)圓周角∠ACB的平分線交⊙OD,判斷出△ADB為等腰直角三角形,然后根據(jù)勾股定理求出具體值.

解:∵AB是直徑

∴∠ACB=∠ADB=90°

Rt△ABC中,AB2=AC2+BC2,AB=10cmAC=6cm

∴BC2=AB2﹣AC2=102﹣62=64

∴BC==8cm

CD平分∠ACB,

∴∠ACD=∠BCD

∴AD=BD

又在Rt△ABD中,AD2+BD2=AB2

∴AD2+BD2=102

∴AD=BD==5cm).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=ax+b的圖像與正比例函數(shù)y=kx的圖像交于點(diǎn)M,

(1)求正比例函數(shù)和一次函數(shù)的解析式;

(2)根據(jù)圖像寫(xiě)出使正比例函數(shù)的值大于一次函數(shù)的值的x的取值范圍;

(3)求ΔMOP的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知坐標(biāo)系中點(diǎn)A2-1),B7,-1),C3,-3).

1)判定ABC的形狀;

2)設(shè)ABC關(guān)于x軸的對(duì)稱圖形是A1B1C1,若把A1B1C1的各頂點(diǎn)的橫坐標(biāo)都加2.縱坐標(biāo)不變,則A1B1C1的位置發(fā)生什么變化?若最終位置是A2B2C2,求C2點(diǎn)的坐標(biāo);

3試問(wèn)在x軸上是否存在一點(diǎn)P,使PC-PB最大,若存在,求出PC-PB的最大值及P點(diǎn)坐標(biāo);若不存在,說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小強(qiáng)和爸爸上山游玩,兩人距地面的高度y(m)與小強(qiáng)登山時(shí)間x(min)之間的函數(shù)圖像分別如圖中折線OAC(小強(qiáng))和線段DE(爸爸)所示,根據(jù)函數(shù)圖像進(jìn)行以下探究:

(1)爸爸登山的速度是每分鐘_______m;

(2)請(qǐng)解釋圖中點(diǎn)B的實(shí)際意義;

(3)求線段DE所表示的yx之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;

(4)m的值;

(5)若小強(qiáng)提速后,他登山的速度是爸爸速度的3倍,試問(wèn)小強(qiáng)登山多長(zhǎng)時(shí)間時(shí)開(kāi)始提速?此時(shí)小強(qiáng)距地面的高度是多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中華商場(chǎng)將進(jìn)價(jià)為40元的襯衫按50元售出時(shí),每月能賣(mài)出500件,經(jīng)市場(chǎng)調(diào)查,這種襯衫每件漲價(jià)4元,其銷售量就減少40件.如果商場(chǎng)計(jì)劃每月賺得8000元利潤(rùn),那么售價(jià)應(yīng)定為多少?這時(shí)每月應(yīng)進(jìn)多少件襯衫?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)P1x1,y1),點(diǎn)P2x2,y2),…,點(diǎn)Pnxn,yn)在函數(shù)yx>0)的圖象上,△P1OA1, P2A1A2,P3A2A3,,PnAn1An都是等腰直角三角形,斜邊OA1A1A2、A2A3,,An1An都在x軸上(n是大于或等于2的正整數(shù)),

(1)求點(diǎn)P1, P2, P3的坐標(biāo).

(2)猜想并直接寫(xiě)出點(diǎn)Pn的坐標(biāo)(用含n的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知菱形ABCD的對(duì)角線AC 、BD相交于點(diǎn)O,延長(zhǎng)AB至點(diǎn)E,使BE=AB,連接CE

(1)求證:四邊形BECD是平行四邊形;

(2)若∠E=60°,AC=,求菱形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:ABC是邊長(zhǎng)為3的等邊三角形,BC為底邊作一個(gè)頂角為120等腰BDC.點(diǎn)M、點(diǎn)N分別是AB邊與AC邊上的點(diǎn),并且滿足∠MDN60.

1)如圖1,當(dāng)點(diǎn)DABC外部時(shí),求證:BM+CNMN;

2)在(1)的條件下求AMN的周長(zhǎng);

3)當(dāng)點(diǎn)DABC內(nèi)部時(shí),其它條件不變,請(qǐng)?jiān)趫D2中補(bǔ)全圖形,并直接寫(xiě)出AMN的周長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形ABCD的頂點(diǎn)B,D都在反比例函數(shù)y=(x>0)的圖象上,點(diǎn)D的坐標(biāo)為(2,6),AB平行于x軸,點(diǎn)A的坐標(biāo)為(0,3),將這個(gè)平行四邊形像左平移2個(gè)單位,再向下平移3個(gè)單位后,點(diǎn)C的坐標(biāo)為(

A.(4,3) B.(2,3) C.(1,4) D.(2,4)

查看答案和解析>>

同步練習(xí)冊(cè)答案