【題目】如圖,已知四邊形ABCD為矩形,AD=20cm、AB=10cm.M點(diǎn)從D到A,P點(diǎn)從B到C,兩點(diǎn)的速度都為2cm/s;N點(diǎn)從A到B,Q點(diǎn)從C到D,兩點(diǎn)的速度都為1cm/s.若四個(gè)點(diǎn)同時(shí)出發(fā).
(1)判斷四邊形MNPQ的形狀.
(2)四邊形MNPQ能為菱形嗎?若能,請(qǐng)求出此時(shí)運(yùn)動(dòng)的時(shí)間;若不能,說明理由.
【答案】(1)四邊形MNPQ是平行四邊形, 理由見解析;(2)四邊形MNPQ能為菱形時(shí),運(yùn)動(dòng)時(shí)間是5 s.
【解析】
(1)利用矩形的性質(zhì)和勾股定理判定四邊形MNPQ的兩組對(duì)邊相等,則該四邊形為平行四邊形;
(2)利用菱形是鄰邊相等的平行四邊形來求運(yùn)動(dòng)時(shí)間.
(1)解:四邊形MNPQ是平行四邊形. 理由如下:
在矩形ABCD中,AD=BC=20cm,AB=CD=10cm,且∠A=∠B=∠C=∠D=90°.
設(shè)運(yùn)動(dòng)時(shí)間為t秒,則AN=CQ=t cm,BP=DM=2t cm.
∴BN=DQ=(10-t)cm,CP=AM=(20-2t)cm.
由勾股定理可得,NP=,MQ=,
∴NP=MQ.
同理,可得MN=PQ.
∴四邊形MNPQ是平行四邊形.
(2)能.理由如下:
∵當(dāng)四邊形MNPQ能為菱形時(shí),NP=QP,
∴=,
∴,
解得 t=5.
即四邊形MNPQ能為菱形時(shí),運(yùn)動(dòng)時(shí)間是5 s.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=﹣x+4的圖象與x軸交于A,與y軸交于點(diǎn)B.
(1)求點(diǎn)A,B的坐標(biāo)并在如圖的坐標(biāo)系中畫出函數(shù)y=﹣x+4的圖象;
(2)若一次函數(shù)y=kx﹣2的圖象經(jīng)過點(diǎn)A,求它的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,A(-4,0),B(6,0),C(2,4),D(-3,2).
(1)求四邊形ABCD的面積;
(2)在y軸上找一點(diǎn)P,使△APB的面積等于四邊形的一半,求P點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,D為△ABC內(nèi)一點(diǎn),∠CAD=∠CBD=15°,E為AD延長(zhǎng)線上的一點(diǎn),且CE=AC.
(1)求∠CDE的度數(shù);
(2)若點(diǎn)M在DE上,且DC=DM,求證:ME=BD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)B在線段AC上,點(diǎn)E在線段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M,N分別是AE,CD的中點(diǎn)。試探索BM和BN的關(guān)系,并證明你的結(jié)論。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠B=34°,∠ACB=104°,AD是BC邊上的高,AE是∠BAC的角平分線,則∠DAE=_____度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某茶葉店準(zhǔn)備從茶農(nóng)處采購(gòu)甲、乙兩種不同品質(zhì)的鐵觀音,已知采購(gòu)2斤甲型鐵觀音和1斤乙型鐵觀音共需要550元,采購(gòu)3斤甲型鐵觀音和2斤乙型鐵觀音共需要900元.
(1)甲、乙兩種型號(hào)的鐵觀音每斤分別是多少元?
(2)該茶葉店準(zhǔn)備用不超過3500元的資金采購(gòu)甲、乙兩種型號(hào)的鐵觀音共20斤,其中甲種型號(hào)的鐵觀音不少于8斤,采購(gòu)的斤數(shù)需為整數(shù),那么該茶店有幾種采購(gòu)方案?
(3)在⑵的條件下,已知該茶葉店銷售甲型鐵觀音1斤可獲利m(m>0)元,銷售乙型鐵觀音1斤可獲利50元,則該茶葉店哪種進(jìn)貨方案可獲利最多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某高科技發(fā)展公司投資500萬元,成功研制出一種市場(chǎng)需求量較大的高科技替代產(chǎn)品,并投入資金1500萬元進(jìn)行批量生產(chǎn),已知生產(chǎn)每件產(chǎn)品的成本為40元.在銷售過程中發(fā)現(xiàn),年銷售單價(jià)定為100元時(shí),年銷售量為20萬件;銷售單價(jià)每增加10元,年銷售量將減少1萬件,設(shè)銷售單價(jià)為x(元),年銷售量為y(萬件),年獲利(年獲利=年銷售額-生產(chǎn)成本-投資)為z(萬元).
(1)試寫出y與x之間的函數(shù)關(guān)系式(不必寫出x的取值范圍);
(2)試寫出z與x之間的函數(shù)關(guān)系式(不必寫出x的取值范圍);
(3)計(jì)算銷售單價(jià)為160元時(shí)的年獲利,并說明同樣的年獲利,銷售單價(jià)還可定為多少元?相應(yīng)的年銷售量分別為多少萬件?
(4)公司計(jì)劃:在第一年按年獲利最大確定的銷售單價(jià),進(jìn)行銷售;第二年年獲利不低于1130萬元.請(qǐng)你借助函數(shù)的大致圖象說明,第二年的銷售單價(jià)x(元)應(yīng)確定在什么范圍內(nèi)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y1=x+m與x軸、y軸分別交于點(diǎn)A、B,與雙曲線(x<0)分別交于點(diǎn)C、D,且C點(diǎn)的坐標(biāo)為(﹣1,2).
(1)分別求出直線AB及雙曲線的解析式;
(2)求出點(diǎn)D的坐標(biāo);
(3)利用圖象直接寫出:當(dāng)x在什么范圍內(nèi)取值時(shí),y1>y2?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com