在平行四邊形ABCD中,∠BAD的平分線交直線BC于E,交直線DC于F.
(1)在圖1中證明CE=CF;
(2)若∠ABC=90°,G是EF的中點(diǎn)(如圖2),討論線段DG與BD的數(shù)量關(guān)系.
(1)證明:如圖1,
∵AF平分∠BAD,
∴∠BAF=∠DAF,
∵四邊形ABCD是平行四邊形,
∴AD∥BC,AB∥CD,
∴∠DAF=∠CEF,∠BAF=∠F,
∴∠CEF=∠F.
∴CE=CF.
(2)解:如圖2,
連接GC、BG,
∵四邊形ABCD為平行四邊形,∠ABC=90°,
∴四邊形ABCD為矩形,
∵AF平分∠BAD,
∴∠DAF=∠BAF=45°,
∵∠DCB=90°,DF∥AB,
∴∠DFA=45°,∠ECF=90°
∴△ECF為等腰直角三角形,
∵G為EF中點(diǎn),
∴EG=CG=FG,CG⊥EF,
∵△ABE為等腰直角三角形,AB=DC,
∴BE=DC,
∵∠CEF=∠GCF=45°,
∴∠BEG=∠DCG=135°
在△BEG與△DCG中,
,
∴△BEG≌△DCG(SAS),
∴BG=DG,
∵CG⊥EF,
∴∠DGC+∠DGA=90°,
又∵∠DGC=∠BGA,
∴∠BGE+∠DGE=90°,
∴△DGB為等腰直角三角形,
∴BD=DG.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,且過點(diǎn)A(3,0),二次函數(shù)圖象的對稱軸是直線x=1,下列結(jié)論正確的是( 。
A.b2<4ac B. ac>0 C. 2a﹣b=0 D. a﹣b+c=0
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com