某商場銷售一批名牌襯衫,平均每天可售出20件,每件盈利40元.為了擴大銷售,增加盈利,盡快減少庫存,商場決定采取適當(dāng)?shù)慕祪r措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價1元,商場平均每天可多售出2件.
(1)若商場平均每天要盈利1200元,每件襯衫應(yīng)降價多少元?
(2)每件襯衫降價多少元,商場平均每天盈利最多?
(1)20;(2)15.

試題分析:(1)總利潤=每件利潤×銷售量.設(shè)每天利潤為元,每件襯衫應(yīng)降價元,據(jù)題意可得利潤表達(dá)式,再求當(dāng)的值;
(2)根據(jù)函數(shù)關(guān)系式,運用函數(shù)的性質(zhì)求最值.
試題解析:(1)設(shè)每天利潤為元,每件襯衫降價元,
根據(jù)題意得,當(dāng)時,,解之得,.根據(jù)題意要盡快減少庫存,所以應(yīng)降價20元.∴每件襯衫應(yīng)降價20元.
(2)設(shè)商場每天盈利為,則.當(dāng)元時,商場盈利最多,共1250元.∴每件襯衫降價15元時,商場平均每天盈利最多.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

沙坪壩火車站將改造成一個集高鐵、輕軌、公交、停車場、商業(yè)于一體的地下七層建筑,地面上欲建造一個圓形噴水池,如圖,點表示噴水池的水面中心,表示噴水柱子,水流從點噴出,按如圖所示的直角坐標(biāo)系,每一股水流在空中的路線可以用來描述,那么水池的半徑至少要          米,才能使噴出的水流不致落到池外。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在邊長為24cm的正方形紙片ABCD上,剪去圖中陰影部分的四個全等的等腰直角三角形,再沿圖中的虛線折起,折成一個長方體形狀的包裝盒(A、B、C、D四個頂點正好重合于上底面上一點)。已知E、F在AB邊上,是被剪去的一個等腰直角三角形斜邊的兩個端點,設(shè)AE=BF=x(cm).

(1)若折成的包裝盒恰好是個正方體,試求這個包裝盒的體積V;
(2)某廣告商要求包裝盒的表面(不含下底面)面積S最大,試問x應(yīng)取何值?S最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線過兩點(m,0)、(n,0),且,拋物線于雙曲線(x>0)的交點為(1,d).
(1)求拋物線與雙曲線的解析式;
(2)已知點都在雙曲線(x>0)上,它們的橫坐標(biāo)分別為,O為坐標(biāo)原點,記,點Q在雙曲線(x<0)上,過Q作QM⊥y軸于M,記。
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=x2+bx+c與x軸交于A(-1,0)、B(3,0)兩點,直線L與拋物線交于A、C兩點,其中C點的橫坐標(biāo)為2.

(1)求拋物線的解析式及直線AC的解析式;
(2)若點D是線段AC下方拋物線上的動點,求四邊形ABCD面積的最大值;
(3)點G是拋物線上的動點,在x軸上是否存在點F,使A、C、F、G這樣的四個點為頂點的四邊形是平行四邊形?如果存在,求出所有滿足條件的F點坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知二次函數(shù)(m為常數(shù))的圖象與x軸的一個交點為(1,0),則關(guān)于x的一元二次方程的兩實數(shù)根是
A.x1=1,x2=-2B.x1=1,x2=2C.x1=1,x2=0D.x1=1,x2=3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知二次函數(shù)y=ax2+bx+c圖象的一部分如圖,則a的取值范圍是____   __.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知直線y=b(b為實數(shù))與函數(shù) y= 的圖像至少有三個公共點,則實數(shù)b的取值范圍             .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,一男生推鉛球,鉛球行進(jìn)高度y(米)與水平距離x(米)之間的關(guān)系是,則鉛球推出距離    米.

查看答案和解析>>

同步練習(xí)冊答案