【題目】在正方形ABCD中,

(1)如圖1,若點(diǎn)E,F(xiàn)分別在邊BC,CD上,AE,BF交于點(diǎn)O,且∠AOF=90°.求證:AE=BF.
(2)如圖2,將正方形ABCD折疊,使頂點(diǎn)A與CD邊上的點(diǎn)M重合,折痕交AD于E,交BC于F,邊AB折疊后與BC邊交于點(diǎn)G.若DC=5,CM=2,求EF的長(zhǎng).

【答案】
(1)

解:如圖1,

∵四邊形ABCD是正方形,

∴AB=BC,∠ABE=∠BCF=90°,

∵∠AOF=90°,

∴∠BAE+∠OBA=90°,

又∵∠FBC+∠OBA=90°,

∴∠BAE=∠CBF,

在△ABE和△BCF中

,

∴△ABE≌△BCF(ASA).

∴AE=BF.


(2)

解:由折疊的性質(zhì)得EF⊥AM,

過點(diǎn)F作FH⊥AD于H,交AM于O,

則∠ADM=∠FHE=90°,

∴∠HAO+∠AOH=90°、∠HAO+∠AMD=90°,

∴∠POF=∠AOH=∠AMD,

又∵EF⊥AM,

∴∠POF+∠OFP=90°、∠HFE+∠FEH=90°,

∴∠POF=∠FEH,

∴∠FEH=∠AMD,

∵四邊形ABCD是正方形,

∴AD=CD=FH=5,

在△ADM和△FHE中,

,

∴△ADM≌△FHE(AAS),

∴EF=AM= = =


【解析】(1)由正方形的性質(zhì)得AB=BC、∠ABE=∠BCF=90°,由∠AOF=90°得∠BAE=∠CBF,再證△ABE≌△BCF即可得;(2)作FH⊥AD,結(jié)合折疊性質(zhì):EF⊥AM,證∠POF=∠AOH=∠AMD=∠FEH,再證△ADM≌△FHE得EF=AM=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校開展課外體育活動(dòng),決定開設(shè)A:籃球、B:乒乓球、C:踢毽子、D:跑步四種活動(dòng)項(xiàng)目.為了解學(xué)生最喜歡哪一種活動(dòng)項(xiàng)目某中學(xué)組織學(xué)生到離學(xué)校15km的東山游玩,先遣隊(duì)與大隊(duì)同時(shí)出發(fā),先遣隊(duì)的速度是大隊(duì)的速度的1.2倍,結(jié)果先遣隊(duì)比大隊(duì)早到0.5h,先遣隊(duì)的速度是多少?大隊(duì)的速度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】x3﹣4x分解因式為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ADBC,1=2,要說明∠3+4=180°,請(qǐng)補(bǔ)充完整解題過程,并在括號(hào)內(nèi)填上相應(yīng)的依據(jù):

:因?yàn)?/span>ADBC(已知),

所以∠1=3(___________).

因?yàn)椤?/span>1=2(已知),

所以∠2=3.

所以BE___________ (___________).

所以∠3+4=180°(___________).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)P(﹣2,3)在第( 。┫笙蓿

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 將拋物線y=x2-2x+1向下平移2個(gè)單位,再向左平移1個(gè)單位,所得拋物線的解析式是( 。

A.y=x2-2x-1B.y=x2+2x-1C.y=x2-2D.y=x2+2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2026精確到百位記作為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】65日是世界環(huán)境日,為了普及環(huán)保知識(shí),增強(qiáng)環(huán)保意識(shí),某市第一中學(xué)舉行了環(huán)保知識(shí)競(jìng)賽,參賽人數(shù)1000人,為了了解本次競(jìng)賽的成績(jī)情況,學(xué)校團(tuán)委從中抽取部分學(xué)生的成績(jī)(滿分為100分,得分取整數(shù))進(jìn)行統(tǒng)計(jì),并繪制出不完整的頻率分布表和不完整的頻數(shù)分布直方圖如下:

(1)直接寫出a的值,并補(bǔ)全頻數(shù)分布直方圖.

分組

頻數(shù)

頻率

49.5~59.5

0.08

59.5~69.5

0.12

69.5~79.5

20

79.5~89.5

32

89.5~100.5

a

(2)若成績(jī)?cè)?/span>80分以上(含80分)為優(yōu)秀,求這次參賽的學(xué)生中成績(jī)?yōu)閮?yōu)秀的約為多少人?

(3)若這組被抽查的學(xué)生成績(jī)的中位數(shù)是80分,請(qǐng)直接寫出被抽查的學(xué)生中得分為80分的至少有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A,B是半徑為6 cm的圓上的兩個(gè)不同的點(diǎn),則弦長(zhǎng)AB的取值范圍是______cm.

查看答案和解析>>

同步練習(xí)冊(cè)答案