精英家教網 > 初中數學 > 題目詳情

【題目】在讀書月活動中,某校號召全體師生積極捐書,為了解所捐書籍的種類,圖書管理員對部分書籍進行了抽樣調查,根據調查數據繪制了如下不完整的統(tǒng)計圖表.請你根據統(tǒng)計圖表所提供的信息回答下面問題:

某校師生捐書種類情況統(tǒng)計表

種類

頻數

百分比

A.科普類

12

n

B.文學類

14

35%

C.藝術類

m

20%

D.其它類

6

15%

(1)統(tǒng)計表中的m= ,n= ;

(2)補全條形統(tǒng)計圖;

(3)本次活動師生共捐書2000本,請估計有多少本科普類圖書?

【答案】(1)8 30%;(2)圖形見解析;(3)600.

【解析】

試題分析:(1)n=135%20%15%=30%,此次抽樣的書本總數為12÷30%=40(本),m=4012146=8;(2)根據(1)中m值可補全統(tǒng)計圖;(3)用樣本中科普類書籍的百分比乘以總數可得答案.

試題解析:(1)m=8,n=30%;(2)統(tǒng)計圖見下圖:

(3)2000×30%=600(本),答:估計有600本科普類圖書.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】閱讀下面材料: 如圖1,在平面直角坐標系xOy中,直線y1=ax+b與雙曲線y2= 交于A(1,3)和B(﹣3,﹣1)兩點.
觀察圖象可知:
①當x=﹣3或1時,y1=y2;
②當﹣3<x<0或x>1時,y1>y2 , 即通過觀察函數的圖象,可以得到不等式ax+b> 的解集.
有這樣一個問題:求不等式x3+4x2﹣x﹣4>0的解集.
某同學根據學習以上知識的經驗,對求不等式x3+4x2﹣x﹣4>0的解集進行了探究.

下面是他的探究過程,請將(2)、(3)、(4)補充完整:
(1)①將不等式按條件進行轉化: 當x=0時,原不等式不成立;
當x>0時,原不等式可以轉化為x2+4x﹣1> ;
當x<0時,原不等式可以轉化為x2+4x﹣1<
②構造函數,畫出圖象
設y3=x2+4x﹣1,y4= ,在同一坐標系中分別畫出這兩個函數的圖象.
雙曲線y4= 如圖2所示,請在此坐標系中畫出拋物線y3=x2+4x﹣1;(不用列表)
(2)確定兩個函數圖象公共點的橫坐標 觀察所畫兩個函數的圖象,猜想并通過代入函數解析式驗證可知:滿足y3=y4的所有x的值為
(3)借助圖象,寫出解集 結合(1)的討論結果,觀察兩個函數的圖象可知:不等式x3+4x2﹣x﹣4>0的解集為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】兩條直線相交,只有1個交點,三條直線相交,最多有3個交點,四條直線相交,最多有6個交點,10條直線相交,最多有( 。﹤交點.

A. 45 B. 42 C. 40 D. 36

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c經過點A(﹣6,0),B(2,0),C(0,﹣6).

(1)求拋物線的解析式;
(2)若點P為第三象限內拋物線上的一點,設△PAC的面積為S,求S的最大值并求出此時點P的坐標;
(3)設拋物線的頂點為D,DE⊥x軸于點E,在y軸上是否存在點M,使得△ADM是直角三角形?若存在,請直接寫出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,點O為對角線AC、BD的交點,點E為BC上一點,連接EO,并延長交AD于點F,則圖中全等三角形共有(
A.5對
B.6對
C.8對
D.10對

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,∠C=90°,AC=BC,斜邊AB=2,O是AB的中點,以O為圓心,線段OC的長為半徑畫圓心角為90°的扇形OEF,弧EF經過點C,則圖中陰影部分的面積為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,將一條長為60cm的卷尺鋪平后沿著圖中箭頭的方向折疊,使得卷尺自身的一部分重合,然后在重合部分沿與卷尺的邊垂直的方向剪一刀,此時卷尺分為了三段,若這三段長度比為123,則折痕對應的刻度可能的值有 ________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,已知平行四邊形ABCD,對角線ACBD相交于點O,OBC=OCB

(1)求證:平行四邊形ABCD是矩形;

(2)請?zhí)砑右粋條件使矩形ABCD為正方形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,A、B、P是數軸上的三個點,PAB的中點,A、B所對應的數值分別為-2040.

(1)試求P點對應的數值;若點A、B對應的數值分別是ab,試用a、b的代數式表示P點在數軸上所對應的數值;

(2)若A、B、P三點同時一起在數軸上做勻速直線運動,A、B兩點相向而行,P點在動點AB之間做觸點折返運動(即P點在運動過程中觸碰到A、B任意一點就改變運動方向,向相反方向運動,速度不變,觸點時間忽略不計),直至A、B兩點相遇,停止運動.如果A、B、P運動的速度分別是1個單位長度/s,2個單位長度/s,3個單位長度/s,設運動時間為t.

①求整個運動過程中,P點所運動的路程.

②若P點用最短的時間首次碰到A點,且與B點未碰到,試寫出該過程中,P點經過t秒鐘后,在數軸上對應的數值(用含t的式子表示);

③在②的條件下,是否存在時間t,使P點剛好在A、B兩點間距離的中點上,如果存在,請求出t值,如果不存在,請說明理由.

查看答案和解析>>

同步練習冊答案