【題目】如圖所示,已知AC∥BD,EA,EB分別平分∠CAB和∠DBA,CD過E點.求證:AB=AC+BD.
【答案】證明見試題解析.
【解析】
試題分析:在AB上取一點F,使AF=AC,連結(jié)EF,就可以得出△ACE≌△AFE,就有∠C=∠AFE.由平行線的性質(zhì)就有∠C+∠D=180°,由∠AFE+∠EFB=180°得出∠EFB=∠D,在證明△BEF≌△BED就可以得出BF=BD,進而就可以得出結(jié)論.
試題解析:證明:在AB上取一點F,使AF=AC,連結(jié)EF.
∵EA、EB分別平分∠CAB和∠DBA,∴∠CAE=∠FAE,∠EBF=∠EBD.∵AC∥BD,∴∠C+∠D=180°.在△ACE和△AFE中,∵AC=AF,∠CAE=∠FAE,AE=AE,∴△ACE≌△AFE(SAS),∴∠C=∠AFE.∵∠AFE+∠EFB=180°,∴∠EFB=∠D.在△BEF和△BED中,∵∠EFB=∠D,∠EBF=∠EBD,BE=BE,∴△BEF≌△BED(AAS),∴BF=BD.∵AB=AF+BF,∴AB=AC+BD.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD,CE⊥CD,且CE=CD,連接BD,DE,BE,則下列結(jié)論:①∠ECA=165°,②BE=BC;③AD⊥BE;其中正確的是_________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若a、b互為倒數(shù),c、d互為相反數(shù),m為最大的負整數(shù),則(ab)5﹣3(c+d﹣m)2= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個三角形的兩個內(nèi)角之和小于第三個內(nèi)角,那么該三角形是( 。
A. 銳角三角形 B. 直角三角形 C. 鈍角三角形 D. 都有可能
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知兩角之比為2:1,且這兩角之和為直角,則這兩個角的大小分別為( 。
A. 70°,22° B. 60°,30° C. 50°,40° D. 55°,35°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c分別是△ABC的三邊,當(dāng)m>0時,關(guān)于x的一元二次方程c(x2+m)+b(x2-m)-2ax=0有兩個相等的實數(shù)根,試判斷△ABC的形狀,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com