【題目】如圖,△ABC的頂點都在方格紙的格點上,將△ABC向右平移4格,再向上平移2格,其中每個格子的邊長為1個單位長度。
⑴在圖中畫出平移后的△A′B′C′;
⑵若連接AA′、CC′,則這兩條線段的關(guān)系是 ;
⑶作△ABC的高AD,并求△ABC的面積。
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,Rt△ABC的三個頂點分別是A(-3,2),B(0,4),C(0,2).
(1)將△ABC以點C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對應的△A1B1C;平移△ABC,若點A的對應點A2的坐標為(0,-4),畫出平移后對應的△A2B2C2;
(2)若將△A1B1C繞某一點旋轉(zhuǎn)可以得到△A2B2C2 , 請直接寫出旋轉(zhuǎn)中心的坐標;
(3)在x軸上有一點P,使得PA+PB的值最小,請直接寫出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A,B是反比例函數(shù)y=在第一象限內(nèi)的圖象上的兩點,且A,B兩點的橫坐標分別是2和4,則△OAB的面積是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】禁漁期間,我漁政船在A處發(fā)現(xiàn)正北方向B處有一艘可以船只,測得A、B兩處距離為200海里,可疑船只正沿南偏東45°方向航行,我漁政船迅速沿北偏東30°方向前去攔截,經(jīng)歷4小時剛好在C處將可疑船只攔截.求該可疑船只航行的平均速度(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=BD,點E、F分別在BC、CD上,且BE=CF,連接BF、DE交于點M,延長ED到H使DH=BM,連接AM,AH,則以下四個結(jié)論:
①△BDF≌△DCE;②∠BMD=120°;③△AMH是等邊三角形;④S四邊形ABCD= AM2.
其中正確結(jié)論的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】提出問題:
(1)如圖,我們將圖(1)所示的凹四邊形稱為“鏢形”.在“鏢形”圖中,與、、的數(shù)量關(guān)系為____.
(2)如圖(2),已知平分,,,求的度數(shù).
由(1)結(jié)論得:
所以 即
因為
所以
所以.
解決問題:
(1)如圖(3),直線平分, 平分的外角,猜想與、的數(shù)量關(guān)系是______;
(2)如圖(4),直線平分的外角, 平分的外角,猜想與、的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,點A為x軸負半軸上一點,點B為x軸正半軸上一點,C(0,a),D(b,a),其中a,b滿足關(guān)系式:|a+3|+(b-a+1)2=0.
(1)a=___,b=___,△BCD的面積為______;
(2)如圖2,若AC⊥BC,點P線段OC上一點,連接BP,延長BP交AC于點Q,當∠CPQ=∠CQP時,求證:BP平分∠ABC;
(3)如圖3,若AC⊥BC,點E是點A與點B之間一動點,連接CE,CB始終平分∠ECF,當點E在點A與點B之間運動時,的值是否變化?若不變,求出其值;若變化,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學家華羅庚在一次出國訪問途中,看到飛機上鄰座的乘客閱讀的雜志上有一道智力題:求59319的立方根.華羅庚脫口而出:39.眾人感覺十分驚奇,請華羅庚給大家解讀了其中的奧秘.
你知道怎樣迅速準確的計算出結(jié)果嗎?請你按下面的問題試一試:
①,,又,
,
能確定59319的立方根是個兩位數(shù).
②59319的個位數(shù)是9,又,
能確定59319的立方根的個位數(shù)是9.
③如果劃去59319后面的三位319得到數(shù)59,
而,則,可得,
由此能確定59319的立方根的十位數(shù)是3
因此59319的立方根是39.
(1)現(xiàn)在換一個數(shù)110592,按這種方法求立方根,請完成下列填空.
①它的立方根是 位數(shù).
②它的立方根的個位數(shù)是 .
③它的立方根的十位數(shù)是 .
④110592的立方根是 .
(2)請直接填寫結(jié)果:
① ;
② ;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們提供如下定理:在直角三角形中,30°的銳角所對的直角邊是斜邊的一半,
如圖(1),Rt△ABC中,∠C=90°,∠A=30°,則BC=AB.
請利用以上定理及有關(guān)知識,解決下列問題:
如圖(2),邊長為6的等邊三角形ABC中,點D從A出發(fā),沿射線AB方向有A向B運動點F同時從C出發(fā),以相同的速度沿著射線BC方向運動,過點D作DE⊥AC,DF交射線AC于點G.
(1)當點D運動到AB的中點時,直接寫出AE的長;
(2)當DF⊥AB時,求AD的長及△BDF的面積;
(3)小明通過測量發(fā)現(xiàn),當點D在線段AB上時,EG的長始終等于AC的一半,他想當點D運動到圖3的情況時,EG的長始終等于AC的一半嗎?若改變,說明理由;若不變,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com