已知拋物線(xiàn)y=數(shù)學(xué)公式x2+px+q與x軸相交于不同的兩點(diǎn)A(x1,0)、B(x2,0)(B在A的右邊),又拋物線(xiàn)與y軸相交于C點(diǎn),且滿(mǎn)足數(shù)學(xué)公式
(1)求證:4p+5q=0;
(2)問(wèn)是否存在一個(gè)圓O',使它經(jīng)過(guò)A、B兩點(diǎn),且與y軸相切于C點(diǎn)?若存在,試確定此時(shí)拋物線(xiàn)的解析式及圓心O'的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

(1)證明:由已知,∵x1、x2是一元二次方程x2+px+q=0的兩個(gè)不相等的實(shí)數(shù)根,

又∵,
=

∴4p+5q=0.

(2)答:存在滿(mǎn)足條件的⊙O'.其理由如下:
設(shè)⊙O'滿(mǎn)足條件,則OC是⊙O'的切線(xiàn),由切割線(xiàn)定理知OC2=OA•OB=|x1x2|.
又∵拋物線(xiàn)y=x2+px+q與y軸交于C點(diǎn),
∴點(diǎn)C的坐標(biāo)為(0,q),
∴OC=|q|.
∴q2=|2q|,
即q2=±2q.
解得q1=0,q2=2,q3=-2.
①當(dāng)q=0時(shí),x1•x2=0不滿(mǎn)足題設(shè)條件.
②當(dāng)q=2時(shí),p=-,此時(shí)拋物線(xiàn)方程y=x2-x+2.
∴點(diǎn)C的坐標(biāo)為(0,2),拋物線(xiàn)的對(duì)稱(chēng)軸為x=
∵圓心O'在AB的垂直平分線(xiàn)上,O'C⊥y軸,
∴圓心O′的坐標(biāo)為(,2);
③當(dāng)q=-2時(shí),p=
此時(shí)拋物線(xiàn)為y=x2+x-2,
∵x1•x2=-4<0,
∴A、B在y軸的兩側(cè).
故過(guò)A、B的圓必與y軸相交,不可能相切,
因此q=-2時(shí)也不滿(mǎn)足題設(shè)條件.
綜上所述,滿(mǎn)足條件的⊙O′是存在的,它的圓心坐標(biāo)為O′(,2),
此時(shí)拋物線(xiàn)的解析式為:y=x2-x+2.
分析:(1)由于A、B是拋物線(xiàn)與x軸的兩個(gè)交點(diǎn),根據(jù)韋達(dá)定理即可表示出x1+x2以及x1x2的表達(dá)式,可將已知的x1、x2的倒數(shù)和變形為x1+x2及x1x2的形式,然后代值計(jì)算,即可證得所求的結(jié)論.
(2)假設(shè)存在符合條件的⊙O′,那么這個(gè)圓必同時(shí)經(jīng)過(guò)A、B、C三點(diǎn),根據(jù)切割線(xiàn)定理即可求得q的值,進(jìn)而可確定拋物線(xiàn)的解析式和A、B、C的坐標(biāo).
①當(dāng)A、B在原點(diǎn)的同一側(cè)時(shí),由于⊙O′同時(shí)經(jīng)過(guò)A、B,則圓心O′必在拋物線(xiàn)的對(duì)稱(chēng)軸上,由此可確定點(diǎn)O′的橫坐標(biāo),而⊙O′與y軸相切于C點(diǎn),那么O′、C的縱坐標(biāo)相同,即可得到所求的O′坐標(biāo);
②當(dāng)A、B分別位于原點(diǎn)兩側(cè)時(shí),此時(shí)⊙O′與y軸相交,因此不存在符合條件的O′.
點(diǎn)評(píng):此題主要考查了根與系數(shù)的關(guān)系、切線(xiàn)的性質(zhì)、切割線(xiàn)定理、二次函數(shù)解析式的確定等知識(shí),同時(shí)還考查了分類(lèi)討論的數(shù)學(xué)思想,難度偏大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線(xiàn)y=x2-8x+c的頂點(diǎn)在x軸上,則c等于( 。
A、4B、8C、-4D、16

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線(xiàn)y=x2+(1-2a)x+a2(a≠0)與x軸交于兩點(diǎn)A(x1,0)、B(x2,0)(x1≠x2).
(1)求a的取值范圍,并證明A、B兩點(diǎn)都在原點(diǎn)O的左側(cè);
(2)若拋物線(xiàn)與y軸交于點(diǎn)C,且OA+OB=OC-2,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線(xiàn)y=-x2+bx+c與x軸負(fù)半軸交于點(diǎn)A,與y軸正半軸交于點(diǎn)B,且OA=OB.
精英家教網(wǎng)(1)求b+c的值;
(2)若點(diǎn)C在拋物線(xiàn)上,且四邊形OABC是平行四邊形,試求拋物線(xiàn)的解析式;
(3)在(2)的條件下,作∠OBC的角平分線(xiàn),與拋物線(xiàn)交于點(diǎn)P,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•虹口區(qū)一模)如圖,在平面直角坐標(biāo)系xOy中,已知拋物線(xiàn)y=x2+bx+c經(jīng)過(guò)A(0,3),B(1,0)兩點(diǎn),頂點(diǎn)為M.
(1)求b、c的值;
(2)將△OAB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°后,點(diǎn)A落到點(diǎn)C的位置,該拋物線(xiàn)沿y軸上下平移后經(jīng)過(guò)點(diǎn)C,求平移后所得拋物線(xiàn)的表達(dá)式;
(3)設(shè)(2)中平移后所得的拋物線(xiàn)與y軸的交點(diǎn)為A1,頂點(diǎn)為M1,若點(diǎn)P在平移后的拋物線(xiàn)上,且滿(mǎn)足△PMM1的面積是△PAA1面積的3倍,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•黔南州)已知拋物線(xiàn)y=x2-x-1與x軸的交點(diǎn)為(m,0),則代數(shù)式m2-m+2011的值為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案