【題目】在△ABC中,AB=2,AC=4,BC=2,以AB為邊向△ABC外作△ABD,若△ABD是等腰直角三角形,則線段CD的長(zhǎng)為_____.
【答案】或或
【解析】
分(1)AB=BD,(2)AB=AD,(3)AD=BD三種情況,根據(jù)勾股定理分別計(jì)算CD的值即可.
解:(1)當(dāng)AB=BD時(shí),作DE⊥BE,
∵∠CAB+∠ABC=90°,∠ABC+∠DBE=90°,
∴∠CAB=∠DBE,
在△BED和△ACB中,
,
∴△BED≌△ACB(AAS),
∴BE=AC=4,DE=BC=2,
∴CD==;
(2)如圖所示,當(dāng)AB=AD時(shí),作DE⊥AE,∵∠CAB+∠ABC=90°,∠BAC+∠DAE=90°,
∴∠ABC=∠DAE,
在△DEA和△ACB中,
,
∴△DEA≌△ACB(AAS),
∴DE=AC=4,AE=BC=2,
∴CD==;
(3)如圖所示,當(dāng)AD=BD時(shí),作DE⊥AC,DF⊥CB延長(zhǎng)線于F,∵∠ADE+∠BDE=90°,∠BDF+∠BDE=90°,
∴∠ADE=∠BDF,
在△ADE和△BDF中,
,
∴△ADE≌△BDF(AAS),
∴AE=BF,
∴AC+BC=AE+CE+CF﹣BF=2CE.
∴CE=3,
∴CD=.
綜上所述,CD的長(zhǎng)是或或,
故答案為:或或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C為線段AB上一點(diǎn),△ACM與△CBN都是等邊三角形,AN與MB交于P.
(1)求證:AN=BM;
(2)連接CP,求證:CP平分∠APB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=-x-3交x軸于點(diǎn)A,交y軸于點(diǎn)B,點(diǎn)P是x軸上一動(dòng)點(diǎn),以點(diǎn)P為圓心,以1個(gè)單位長(zhǎng)度為半徑作⊙P,當(dāng)⊙P與直線AB相切時(shí),點(diǎn)P的坐標(biāo)是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC與△CDE為等腰直角三角形,∠BAC=∠DEC=90°,連接AD,取AD中點(diǎn)P,連接BP,并延長(zhǎng)到點(diǎn)M,使BP=PM,連接AM、EM、AE,將△CDE繞點(diǎn)C順時(shí)針旋轉(zhuǎn).
(1)如圖①,當(dāng)點(diǎn)D在BC上,E在AC上時(shí),AE與AM的數(shù)量關(guān)系是______,∠MAE=______;
(2)將△CDE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)到如圖②所示的位置,(1)中的結(jié)論是否仍然成立,若成立,請(qǐng)給出證明,若不成立,請(qǐng)說明理由;
(3)若CD=BC,將△CDE由圖①位置繞點(diǎn)C順時(shí)針旋轉(zhuǎn)α(0°<α<360°),當(dāng)ME=CD時(shí),請(qǐng)直接寫出α的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠ACB=90°,AC=6,AB=10,⊙C與AB相切于點(diǎn)D,延長(zhǎng)AC到點(diǎn)E,使CE=AC,連接EB.過點(diǎn)E作BE的垂線,交⊙C于點(diǎn)P、Q,交BA的延長(zhǎng)線于點(diǎn)F.
(1)求AD的長(zhǎng);
(2)求證:EB與⊙C相切;
(3)求線段PQ的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與探究
如圖,拋物線y=a經(jīng)過點(diǎn)A、B、C且點(diǎn)C坐標(biāo)為(0,2).
(1)求出拋物線的解析式;
(2)在直線AC上方的拋物線上有一點(diǎn)D,使得△DCA的面積最大,求出點(diǎn)D的坐標(biāo).
(3)點(diǎn)H在線段AC上,若OH最短時(shí),在x軸上找一點(diǎn)N,使△CHN周長(zhǎng)最小時(shí),求點(diǎn)N的坐標(biāo)
(4)P是拋物線上一動(dòng)點(diǎn),過P作PM⊥x軸,垂足為M,是否存在P點(diǎn),使得以A,P,M為頂點(diǎn)的三角形與△OAC相似?若存在,請(qǐng)求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB是直徑,D是AC中點(diǎn),直線OD與⊙O相交于E,F兩點(diǎn),P是⊙O外一點(diǎn),P在直線OD上,連接PA,PC,AF,且滿足∠PCA=∠ABC.
(1)證明:EF2=4ODOP;
(2)若tan∠AFP=,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】鐘南山院士談到防護(hù)新型冠狀病毒肺炎時(shí)說:“我們需要重視防護(hù),但也不必恐慌,盡量少去人員密集的場(chǎng)所,出門戴口罩,在室內(nèi)注意通風(fēng),勤洗手,多運(yùn)動(dòng),少熬夜.”某社區(qū)為了加強(qiáng)社區(qū)居民對(duì)新型冠狀病毒肺炎防護(hù)知識(shí)的了解,通過微信群宣傳新型冠狀病毒 肺炎的防護(hù)知識(shí),并鼓勵(lì)社區(qū)居民在線參與作答《2020 年新型冠狀病毒防治全國(guó)統(tǒng)一考試 (全國(guó)卷)》試卷(滿分 100 分),社區(qū)管理員隨機(jī)從甲、乙兩個(gè)小區(qū)各抽取 20 名人員的 答卷成績(jī),并對(duì)他們的成績(jī)(單位:分)進(jìn)行統(tǒng)計(jì)、分析,過程如下:
收集數(shù)據(jù)
甲小區(qū):85 80 95 100 90 95 85 65 75 85 90 90 70 90 100 80 80 90 95 75
乙小區(qū):80 60 80 95 65 100 90 85 85 80 95 75 80 90 70 80 95 75 100 90
整理數(shù)據(jù)
60≤x≤70 | 70<x≤80 | 80<x≤90 | 90<x≤100 | |
甲小區(qū) | 2 | 5 | 8 | 5 |
乙小區(qū) | 3 | 7 | 5 | 5 |
分析數(shù)據(jù)
平均數(shù) | 中位數(shù) | 眾數(shù) | |
甲小區(qū) | 85.75 | 87.5 | a |
乙小區(qū) | 83.5 | b | 80 |
應(yīng)用數(shù)據(jù)
(1)填空:a = ,b =___,
(2)若甲小區(qū)共有 800 人參與答卷,請(qǐng)估計(jì)甲小區(qū)成績(jī)大于 90 分的人數(shù)為_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】名聞遐邇的采花毛尖明前茶,成本每廳400元,某茶場(chǎng)今年春天試營(yíng)銷,每周的銷售量y(斤)是銷售單價(jià)x(元/斤)的一次函數(shù),且滿足如下關(guān)系:
x(元/斤) | 450 | 500 | 600 |
y(斤) | 350 | 300 | 200 |
(1)請(qǐng)根據(jù)表中的數(shù)據(jù)求出y與x之間的函數(shù)關(guān)系式;
(2)若銷售每斤茶葉獲利不能超過40%,該茶場(chǎng)每周獲利不少于30000元,試確定銷售單價(jià)x的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com