【題目】已知:如圖一,拋物線y=ax2+bx+c與x軸正半軸交于A、B兩點,與y軸交于點C,直線y=x﹣2經(jīng)過A、C兩點,且AB=2.
(1)求拋物線的解析式;
(2)若直線DE平行于x軸并從C點開始以每秒1個單位的速度沿y軸正方向平移,且分別交y軸、線段BC于點E,D,同時動點P從點B出發(fā),沿BO方向以每秒2個單位速度運動,(如圖2);當(dāng)點P運動到原點O時,直線DE與點P都停止運動,連DP,若點P運動時間為t秒;設(shè)s=,當(dāng)t為何值時,s有最小值,并求出最小值.
(3)在(2)的條件下,是否存在t的值,使以P、B、D為頂點的三角形與△ABC相似;若存在,求t的值;若不存在,請說明理由.
【答案】(1)y=﹣x2+x﹣2;(2)當(dāng)t=1時s有最小值,且最小值為1;(3)t=或.
【解析】
試題分析:(1)首先根據(jù)直線AC的解析式確定點A、C的坐標(biāo),已知AB的長,進(jìn)一步能得到點B的坐標(biāo);然后由待定系數(shù)法確定拋物線的解析式;(2)根據(jù)所給的s表達(dá)式,要解答該題就必須知道ED、OP的長;BP、CE長由計算可知,那么由OP=OB﹣BP求得OP長,由∠CED的三角函數(shù)值可得到ED的長,再代入s的表達(dá)式中可得到關(guān)于s、t的函數(shù)關(guān)系式,結(jié)合函數(shù)的性質(zhì)即可得到s的最小值;(3)首先求出BP、BD的長,若以P、B、D為頂點的三角形與△ABC相似,已知的條件是公共角∠OBC,那么必須滿足的條件是夾公共角的兩組對應(yīng)邊成比例,分兩種情況討論即可.
試題解析:(1)由直線:y=x﹣2知:A(2,0)、C(0,﹣2);∵AB=2,∴OB=OA+AB=4,即B(4,0).設(shè)拋物線的解析式為:y=a(x﹣2)(x﹣4),代入C(0,﹣2),得:a(0﹣2)(0﹣4)=﹣2,解得 a=﹣,∴拋物線的解析式:y=﹣(x﹣2)(x﹣4)=﹣x2+x﹣2;(2)在Rt△OBC中,OB=4,OC=2,則tan∠OCB=2;∵CE=t,∴DE=2t,而OP=OB﹣BP=4﹣2t;
∴s===(0<t<2),∴當(dāng)t=1時,s有最小值,且最小值為1.
(3)在Rt△OBC中,OB=4,OC=2,則BC=2;在Rt△CED中,CE=t,ED=2t,則CD=t;
∴BD=BC﹣CD=2﹣t;若以P、B、D為頂點的三角形與△ABC相似,已知∠OBC=∠PBD,則有兩種情況:①=,解得 t=;②=,解得 t=;綜上所述,當(dāng)t=或時,以P、B、D為頂點的三角形與△ABC相似.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=x2+3與x軸交于點A,點B,與直線y=x+b相交于點B,點C,直線y=x+b與y軸交于點E.
(1)寫出直線BC的解析式.
(2)求△ABC的面積.
(3)若點M在線段AB上以每秒1個單位長度的速度從A向B運動(不與A,B重合),同時,點N在射線BC上以每秒2個單位長度的速度從B向C運動.設(shè)運動時間為t秒,請寫出△MNB的面積S與t的函數(shù)關(guān)系式,并求出點M運動多少時間時,△MNB的面積最大,最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算-9+5×(-6)-(-4)2÷(-8)的結(jié)果是( )
A. -37 B. -41 C. 23 D. -19
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com