【題目】如圖,直線y=x+2與拋物線y=ax2+bx+6(a≠0)相交于A( , )和B(4,m),點(diǎn)P是線段AB上異于A、B的動(dòng)點(diǎn),過點(diǎn)P作PC⊥x軸于點(diǎn)D,交拋物線于點(diǎn)C.
(1)求拋物線的解析式;
(2)是否存在這樣的P點(diǎn),使線段PC的長有最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說明理由.
【答案】
(1)
解:∵B(4,m)在直線y=x+2上,
∴m=6,即B(4,6),
∵A( , )和B(4,6)在拋物線y=ax2+bx+6上,
∴ ,
解得: ,
∴拋物線的解析式y(tǒng)=2x2﹣8x+6
(2)
解:存在.
設(shè)動(dòng)點(diǎn)P的坐標(biāo)為(n,n+2),點(diǎn)C的坐標(biāo)為(n,2n2﹣8n+6),
∴PC=(n+2)﹣(2n2﹣8n+6)=﹣2n2+9n﹣4=﹣2(n﹣ )2+ ,
∵﹣2<0,
∴開口向下,有最大值,
∴當(dāng)n= 時(shí),線段PC有最大值
【解析】(1)將點(diǎn)B坐標(biāo)代入直線解析式,求出m的值,然后把A、B坐標(biāo)代入二次函數(shù)解析式,求出a、b,即可求得解析式;(2)設(shè)動(dòng)點(diǎn)P的坐標(biāo)為(n,n+2),點(diǎn)C的坐標(biāo)為(n,2n2﹣8n+6),表示出PC的長度,然后利用配方法求出二次函數(shù)的最大值,并求出此時(shí)n的值.
【考點(diǎn)精析】本題主要考查了二次函數(shù)的圖象和二次函數(shù)的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握二次函數(shù)圖像關(guān)鍵點(diǎn):1、開口方向2、對(duì)稱軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn);增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減;對(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減小才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】班級(jí)準(zhǔn)備召開主題班會(huì),現(xiàn)從由3名男生和2名女生所組成的班委中,隨機(jī)選取兩人擔(dān)任主持人,求兩名主持人恰為一男一女的概率.(請(qǐng)用“畫樹狀圖”或“列表”等方法寫出過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知P(﹣3,m)和Q(1,m)是拋物線y=2x2+bx+1上的兩點(diǎn).
(1)求b的值;
(2)將拋物線y=2x2+bx+1的圖象向上平移k(k是正整數(shù)),使平移后的圖象的頂點(diǎn)在x軸上,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】四邊形中,,,在、上分別找一點(diǎn)、,使三角形周長最小時(shí),則的度數(shù)為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,長方形的兩邊長分別為m+3,m+13;如圖2的長方形的兩邊長分別為m+5,m+7.(其中m為正整數(shù))
(1)寫出兩個(gè)長方形的面積S1,S2,并比較S1,S2的大小;
(2)現(xiàn)有一個(gè)正方形的周長與圖1中的長方形的周長相等.試探究該正方形的面積與長方形的面積的差是否是一個(gè)常數(shù),如果是,求出這個(gè)常數(shù);如果不是,說明理由.
(3)在(1)的條件下,若某個(gè)圖形的面積介于S1,S2之間(不包括S1,S2)且面積為整數(shù),這樣的整數(shù)值有且只有19個(gè),求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)和正比例函數(shù)y= x的圖象如圖所示,則方程ax2+(b﹣ )x+c=0(a≠0)的兩根之和( )
A.大于0
B.等于0
C.小于0
D.不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠BAC=90°,AB=AC,D、E是BC邊上的點(diǎn),將△ABD繞點(diǎn)A旋轉(zhuǎn),得到△ACD′.
(1)當(dāng)∠DAE=45°時(shí),求證:DE=D′E;
(2)在(1)得條件下,猜想:BD2、DE2、CE2有怎樣的數(shù)量關(guān)系?請(qǐng)寫出,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2+mx+m﹣2=0
(1)若該方程的一個(gè)根為1,求m的值及該方程的另一根;
(2)求證:不論m取何實(shí)數(shù),該方程都有兩個(gè)不相等的實(shí)數(shù)根.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com