【題目】如圖,已知線段AB=9,點C為線段AB上一點,AC=3,點D為平面內(nèi)一動點,且滿足CD=3,連接BD將BD繞點D逆時針旋轉(zhuǎn)90到DE,連接BE、AE,則AE的最大值為 ________。
科目:初中數(shù)學 來源: 題型:
【題目】全民健身運動已成為一種時尚,為了了解我市居民健身運動的情況,某健身館的工作人員開展了一項問卷調(diào)查,問卷包括五個項目:A:健身房運動;B:跳廣場舞;C:參加暴走團;D:散布;E:不運動.
以下是根據(jù)調(diào)查結(jié)果繪制的統(tǒng)計圖表的一部分.
運動形式 | A | B | C | D | E |
人數(shù) | 12 | 30 | m | 54 | 9 |
請你根據(jù)以上信息,回答下列問題:
(1)接受問卷調(diào)查的共有 人,圖表中的m= ,n= ;
(2)統(tǒng)計圖中,A類所對應的扇形圓心角的度數(shù)為 ;
(3)根據(jù)調(diào)查結(jié)果,我市市民最喜愛的運動方式是 ,不運動的市民所占的百分比是 ;
(4)我市碧沙崗公園是附近市民喜愛的運動場所之一,每晚都有“暴走團”活動,若最鄰近的某社區(qū)約有1500人,那么估計一下該社區(qū)參加碧沙崗“暴走團”的大約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=x+與雙曲線y=在第一象限內(nèi)的圖象交于一點A(1,1),與x負半軸交與點B.點P(m,n)是該雙曲線在第一象限內(nèi)圖象上的一點,且P點在A點的右側(cè),分別過點A、P作x軸的垂線,垂足分別為點C、D,連結(jié)PB.則△ABC的面積___△PBD的面積(填“<”、“=”或“>”).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC 中,AB = AC,以AB為直徑的⊙O 分 別交AC,BC于點 D,E,過點B作⊙O的切線, 交 AC的延長線于點F.
(1) 求證:∠CBF =∠CAB;
(2) 若CD = 2,,求FC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,點A為⊙0外一點,過A作⊙O的切線與⊙O相切于點P,連接PO并延長至圓上一點B連接AB交⊙O于點C,連接OA交⊙O于點D連接DP且∠OAP=∠DPA。
(1)求證:PO=PD
(2)若AC=,求⊙O的半徑。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】兩塊完全相同的直角三角形紙板ABC和DEF疊放,其中∠ABC=∠DEF=90°,點O為邊BC和EF的交點.
(1)求證:△BOF≌△COE.
(2)若∠F=30°,AE=1,求OC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=6,BC=4,點E是邊BC上一動點,把△DCE沿DE折疊得△DFE,射線DF交直線CB于點P,當△AFD為等腰三角形時,DP的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某數(shù)學興趣小組在探究函數(shù)y=x2﹣2|x|+3的圖象和性質(zhì)時,經(jīng)歷了以下探究過程:
(1)列表(完成下列表格).
x | … | ﹣3 | ﹣2 | ﹣1 | ﹣ | 0 | 1 | 2 | 3 | … | |
y | … | 6 | 3 | 2 |
|
|
| 2 | 3 | 6 | … |
(2)描點并在圖中畫出函數(shù)的大致圖象;
(3)根據(jù)函數(shù)圖象,完成以下問題:
①觀察函數(shù)y=x2﹣2|x|+3的圖象,以下說法正確的有 (填寫正確的序號)
A.對稱軸是直線x=1;
B.函數(shù)y=x2﹣2|x|+3的圖象有兩個最低點,其坐標分別是(﹣1,2)、(1,2);
C.當﹣1<x<1時,y隨x的增大而增大;
D.當函數(shù)y=x2﹣2|x|+3的圖象向下平移3個單位時,圖象與x軸有三個公共點;
E.函數(shù)y=(x﹣2)2﹣2|x﹣2|+3的圖象,可以看作是函數(shù)y=x2﹣2|x|+3的圖象向右平移2個單位得到.
②結(jié)合圖象探究發(fā)現(xiàn),當m滿足 時,方程x2﹣2|x|+3=m有四個解.
③設函數(shù)y=x2﹣2|x|+3的圖象與其對稱軸相交于P點,當直線y=n和函數(shù)y=x2﹣2|x|+3圖象只有兩個交點時,且這兩個交點與點P所構成的三角形是等腰直角三角形,求n的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com