【題目】全民健身運動已成為一種時尚,為了了解我市居民健身運動的情況,某健身館的工作人員開展了一項問卷調(diào)查,問卷包括五個項目:A:健身房運動;B:跳廣場舞;C:參加暴走團;D:散布;E:不運動.

以下是根據(jù)調(diào)查結果繪制的統(tǒng)計圖表的一部分.

運動形式

A

B

C

D

E

人數(shù)

12

30

m

54

9

請你根據(jù)以上信息,回答下列問題:

(1)接受問卷調(diào)查的共有   人,圖表中的m=   ,n=   

(2)統(tǒng)計圖中,A類所對應的扇形圓心角的度數(shù)為   

(3)根據(jù)調(diào)查結果,我市市民最喜愛的運動方式是   ,不運動的市民所占的百分比是   ;

(4)我市碧沙崗公園是附近市民喜愛的運動場所之一,每晚都有暴走團活動,若最鄰近的某社區(qū)約有1500人,那么估計一下該社區(qū)參加碧沙崗暴走團的大約有多少人?

【答案】(1)150、45、36;(2)28.8°;(3)散步、6%;(4)估計該社區(qū)參加碧沙崗暴走團的大約有450人.

【解析】分析:(1)、根據(jù)B的人數(shù)和所占的百分比得出總人數(shù),然后根據(jù)總人數(shù)得出m的值,最后根據(jù)D的人數(shù)和總人數(shù)求出n的值;(2)、根據(jù)A的人數(shù)和總人數(shù)得出百分比,從而得出圓心角的度數(shù);(3)、根據(jù)E的人數(shù)得出百分比;(4)、根據(jù)C的人數(shù)和總人數(shù)得出百分比,然后乘以社區(qū)總人數(shù)得出答案.

詳解:解:(1)、接受問卷調(diào)查的共有30÷20%=150人,m=150﹣(12+30+54+9)=45,

n%=×100%=36%, n=36,

(2)、A類所對應的扇形圓心角的度數(shù)為360°×=28.8°,

(3)、根據(jù)調(diào)查結果,我市市民最喜愛的運動方式是散步,不運動的市民所占的百分比是×100%=6%,

(4)、1500×=450(人),

答:估計該社區(qū)參加碧沙崗暴走團的大約有450人.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】中華文明,源遠流長;中華漢字,寓意深廣,為了傳承優(yōu)秀傳統(tǒng)文化,某校團委組織了一次全校3000名學生參加的“漢字聽寫”大賽,賽后發(fā)現(xiàn)所有參賽學生的成績均不低于50分.為了更好地了解本次大賽的成績分布情況,隨機抽取了其中200名學生的成績(成績x取整數(shù),總分100)作為樣本進行整理,得到下列不完整的統(tǒng)計圖表:

成績x/

頻數(shù)

頻率

50x60

10

0.05

 60x70

30

0.15

 70x80

40

n

 80x90

m

0.35

 90x100

50

0.25

請根據(jù)所給信息,解答下列問題:

(1)m   n   ;

(2)請補全頻數(shù)分布直方圖;

(3)若成績在90分以上(包括90)的為“優(yōu)”等,則該校參加這次比賽的3000名學生中成績“優(yōu)”等約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,△ABC經(jīng)過平移之后成為△DEF,那么:

(1)A的對應點是點________;

(2)________的對應點是點F

(3)線段AB的對應線段是線段________;

(4)線段BC的對應線段是線段________

(5)A的對應角是________;

(6)________的對應角是∠F.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某水果生產(chǎn)基地,某天安排30名工人采摘枇杷或草莓(每名工人只能做其中一項工作),并且每人每天摘0.4噸枇杷或0.3噸草莓,當天的枇杷售價每噸2000元,草莓售價每噸3000元,設安排其中x名工人采摘枇杷,兩種水果當天全部售出,銷售總額達y元.

1)求yx之間的函數(shù)關系式;

2)若要求當天采摘枇杷的數(shù)量不少于草莓的數(shù)量,求銷售總額的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,點F為對角線AC上一點,點EDF的延長線上,且DF=EF,連接CE、BE,若AF=3,BE=2,BC=5,則EC=_________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)y=ax+b的圖象與反比例函數(shù)y=的圖象交于一、三象限內(nèi)的A、B兩點,與x軸交于C點,點A的坐標為(2,m),點B的坐標為(n,﹣2),tan∠BOC=
(1)求該反比例函數(shù)和一次函數(shù)的解析式.
(2)求△BOC的面積.
(3)P是x軸上的點,且△PAC的面積與△BOC的面積相等,求P點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線y= x+2與雙曲線相交于點A(m,3),與x軸交于點C.

(1)求雙曲線解析式;
(2)點P在x軸上,如果△ACP的面積為3,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,長方形紙片ABCD沿EF折疊后,EDBC于點G,點DC分別落在點D′C′位置上,若∠EFG=55°,∠BGE=_____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列命題的逆命題成立的有( )

勾股數(shù)是三個正整數(shù) 全等三角形的三條對應邊分別相等

如果兩個實數(shù)相等,那么它們的平方相等 平行四邊形的兩組對角分別相等

A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案