【題目】如圖已知P為⊙O外一點(diǎn),PA為⊙O的切線,B為⊙O上一點(diǎn),且PA=PB,C為優(yōu)弧 上任意一點(diǎn)(不與A、B重合),連接OP、AB,AB與OP相交于點(diǎn)D,連接AC、BC.

(1)求證:PB為⊙O的切線;
(2)若tan∠BCA= ,⊙O的半徑為 ,求弦AB的長.

【答案】
(1)

證明:連接OA,OB,如圖所示:

∵AP為圓O的切線,

∴∠OAP=90°,

在△OAP和△OBP中,

,

∴△OAP≌△OBP(SSS),

∴∠OAP=∠OBP=90°,

則BP為圓O的切線;


(2)

解:延長線段BO,與圓O交于E點(diǎn),連接AE,

∵BE為圓O的直徑,∴∠BAE=90°,

∵∠AEB和∠ACB都對 ,

∴∠AEB=∠ACB,

∴tan∠AEB=tan∠ACB=

設(shè)AB=2x,則AE=3x,

在Rt△AEB中,BE=2 ,

根據(jù)勾股定理得:(2x)2+(3x)2=(2 2,

解得:x=2或x=﹣2(舍去),

則AB=2x=4.


【解析】(1)連接OA,OB,根據(jù)AP為圓O的切線,利用切線的性質(zhì)得到∠OAP為直角,由半徑OA=OB,已知AP=BP,以及公共邊OP,利用SSS得出△OAP≌△OBP,利用全等三角形的對應(yīng)角相等得到∠OBP為直角,即BP垂直于OB,可得出BP為圓O的切線;(2)延長BO與圓交于點(diǎn)E,連接AE,利用同弧所對的圓周角相等得到∠AEB=∠ACB,可得出tan∠AEB的值,由BE為圓O的直徑,利用直徑所對的圓周角為直角,得到∠BAE為直角,在直角三角形AEB中,設(shè)AB=2x,得到AE=3x,再由直徑BE的長,利用勾股定理得到關(guān)于x的方程,求出方程的解得到x的值,即可求出弦AB的長.
【考點(diǎn)精析】掌握垂徑定理和解直角三角形是解答本題的根本,需要知道垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條。解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將下列各數(shù)填入相應(yīng)的集合中:

—7 , 0,, —2.55555……, 3.01, +9 , 4.020020002…, +10﹪,

有理數(shù)集合:{ };

無理數(shù)集合:{ };

整數(shù)集合:{ };

分?jǐn)?shù)集合:{ }

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形OABC的頂點(diǎn)A、C分別在的正半軸上,點(diǎn)B的坐標(biāo)為(3,4)一次函數(shù)的圖象與邊OC、AB分別交于點(diǎn)D、E,并且滿足OD= BE.點(diǎn)M是線段DE上的一個(gè)動點(diǎn).

(1)求b的值;

(2)連結(jié)OM,若三角形ODM的面積與四邊形OAEM的面積之比為1:3,求點(diǎn)M的坐標(biāo);

(3)設(shè)點(diǎn)N是軸上方平面內(nèi)的一點(diǎn),以O(shè)、D、M、N為頂點(diǎn)的四邊形是菱形,求點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為了解本校學(xué)生對球類運(yùn)動的愛好情況,采用抽樣的方法,從乒乓球、羽毛球、籃球和排球四個(gè)方面調(diào)查了若干名學(xué)生,在還沒有繪制成功的“折線統(tǒng)計(jì)圖”與“扇形統(tǒng)計(jì)圖”中,請你根據(jù)已提供的部分信息解答下列問題.
(1)在這次調(diào)查活動中,一共調(diào)查了名學(xué)生,并請補(bǔ)全統(tǒng)計(jì)圖.
(2)“羽毛球”所在的扇形的圓心角是度.
(3)若該校有學(xué)生1200名,估計(jì)愛好乒乓球運(yùn)動的約有多少名學(xué)生?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,D、E分別是AB、AC的中點(diǎn),BE=2DE,延長DE到點(diǎn)F,使得EF=BE,連接CF.

(1)求證:四邊形BCFE是菱形;

(2)若CE=4,BCF=120°,求菱形BCFE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=90°,∠B=45°,BC=10 cm,過點(diǎn)AAD∥BC,且點(diǎn)D在點(diǎn)A的右側(cè).點(diǎn)P從點(diǎn)A出發(fā)沿射線AD方向以每秒1cm的速度運(yùn)動,同時(shí)點(diǎn)Q從點(diǎn)C出發(fā)沿射線CB方向以每秒2cm的速度運(yùn)動,在線段QC上取點(diǎn)E,使得QE =2cm,連結(jié)PE,設(shè)點(diǎn)P的運(yùn)動時(shí)間為t秒.

(1)①CE= 用含t的式子表示)

PE⊥BC,BQ的長;

(2)請問是否存在t的值,使以A,B,E,P為頂點(diǎn)的四邊形為平行四邊形?若存在,求出t的值;若不存在,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,在平面直角坐標(biāo)系中,Rt△ABC的斜邊BC在x軸上,直角頂點(diǎn)A在y軸的正半軸上,A(0,2),B(﹣1,0).

(1)求點(diǎn)C的坐標(biāo);
(2)求過A、B、C三點(diǎn)的拋物線的解析式和對稱軸;
(3)設(shè)點(diǎn)P(m,n)是拋物線在第一象限部分上的點(diǎn),△PAC的面積為S,求S關(guān)于m的函數(shù)關(guān)系式,并求使S最大時(shí)點(diǎn)P的坐標(biāo);
(4)在拋物線對稱軸上,是否存在這樣的點(diǎn)M,使得△MPC(P為上述(3)問中使S最大時(shí)的點(diǎn))為等腰三角形?若存在,請直接寫出點(diǎn)M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點(diǎn)D是AC邊上一點(diǎn),AD=10,DC=8.以AD為直徑的⊙O與邊BC切于點(diǎn)E,且AB=BE

(1)求證:AB是⊙O的切線;
(2)過D點(diǎn)作DF∥BC交⊙O于點(diǎn)F,求線段DF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C,D為線段AB上的兩點(diǎn),MN分別是線段AC,BD的中點(diǎn).

(1)如果CD=5cm,MN=8cm,求AB的長;

(2)如果AB=a,MN=b,求CD的長.

查看答案和解析>>

同步練習(xí)冊答案