【題目】如圖,在△ABC中,點D是AC邊上一點,AD=10,DC=8.以AD為直徑的⊙O與邊BC切于點E,且AB=BE

(1)求證:AB是⊙O的切線;
(2)過D點作DF∥BC交⊙O于點F,求線段DF的長.

【答案】
(1)

解:如圖,連接OB、OE.

在△ABO和△EBO中,

,

∴△ABO≌△EBO(SSS),

∴∠BAO=∠BEO(全等三角形的對應(yīng)角相等);

又∵BE是⊙O的切線,

∴OE⊥BC,

∴∠BEO=90°,

∴∠BAO=90°,即AB⊥AD,

∴AB是⊙O的切線;


(2)

解:

∵AD=10,DC=8,

∴OC=13,OE=5,

∴在直角△OEC中,根據(jù)勾股定理知,EC=12.

設(shè)DF交OE于點G.

∵DF∥BC(已知),

∴∠OGD=∠OEC=90°(兩直線平行,同位角相等),

∴OG⊥DF,

∴FD=2DG(垂徑定理);

∵DF∥BC,

,即 ,

∴DG= ,

∴DF=


【解析】(1)欲證AB是⊙O的切線,只需證明證得AB⊥AD即可;(2)根據(jù)垂徑定理推知DF=2DG;然后根據(jù)平行線截線段成比例證得 = ,即 = ,由此可以求得DF的長度.
【考點精析】關(guān)于本題考查的勾股定理的概念和垂徑定理,需要了解直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧才能得出正確答案.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】(1)如上圖,正方形網(wǎng)格中的每個小正方形邊長都是1,任意連接這些小正方形的頂點,可得到一些線段;請在圖中畫出AB=,CD=,EF=這樣的線段;

(2)如圖所示,在邊長為1的網(wǎng)格中作出△ABC繞點A按逆時針方向旋轉(zhuǎn)90°后的圖形△ABC;并計算對應(yīng)點B和B之間的距離?

(3)如圖是由5個邊長為1的小正方形拼成的.

①將該圖形分成三塊(在圖中畫出),使由這三塊可拼成一個正方形;

②求出所拼成的正方形的面積S.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖已知P為⊙O外一點,PA為⊙O的切線,B為⊙O上一點,且PA=PB,C為優(yōu)弧 上任意一點(不與A、B重合),連接OP、AB,AB與OP相交于點D,連接AC、BC.

(1)求證:PB為⊙O的切線;
(2)若tan∠BCA= ,⊙O的半徑為 ,求弦AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,點P、Q分別是邊AD和BC的中點,沿過C點的直線折疊矩形ABCD使點B落在線段PQ上的點F處,折痕交AB邊于點E,交線段PQ于點G,若BC長為3,則線段FG的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店購進甲、乙兩種型號的滑板車,共花費13000元,所購進甲型車的數(shù)量不少于乙型車數(shù)量的二倍,但不超過乙型車數(shù)量的三倍.現(xiàn)已知甲型車每輛進價200元,乙型車每輛進價400元,設(shè)商店購進乙型車x輛.
(1)商店有哪幾種購車方案?
(2)若商店將購進的甲、乙兩種型號的滑板車全部售出,并且銷售甲型車每輛獲得利潤70元,銷售乙型車每輛獲得利潤50元,寫出此商店銷售這兩種滑板車所獲得的總利潤y(元)與購進乙型車的輛數(shù)x(輛)之間的函數(shù)關(guān)系式?并求出商店購進乙型車多少輛時所獲得的利潤最大?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:

(1)﹣20+(﹣14)﹣(﹣18)﹣13 (2)27-18+43-32

(3)(+)﹣(﹣)﹣|﹣3| (4)

(5)﹣64÷3×; (6)-22++77+0

(7) (8)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】圖1是由若干個小圓圈堆成的一個形如等邊三角形的圖案,最上面一層有一個圓圈,

以下各層均比上一層多一個圓圈,一共堆了n 層.將圖1倒置后與原圖1拼成圖2的形狀,這樣我們可以

算出圖1中所有圓圈的個數(shù)為123n

如果圖中的圓圈共有13層,請解決下列問題:

1)我們自上往下,在每個圓圈中按圖3的方式填上一串連續(xù)的正整數(shù)12,3,4,……,則最底層最左

邊這個圓圈中的數(shù)是 ;

2)我們自上往下,在每個圓圈中按圖4的方式填上一串連續(xù)的整數(shù)-23,-22,-21,-20……,求

最底層最右邊圓圈內(nèi)的數(shù)是_______

3)求圖4中所有圓圈中各數(shù)的絕對值之和.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在梯形ABCD中,AD∥BC,AD=8,BC=15,點E在BC邊上,且CE=2BE。點P以每秒1個單位長度的速度從點A出發(fā),沿AD向點D運動;點Q同時以每秒3個單位長度的速度從點C出發(fā),沿CB向點B運動,當其中一個點停止運動時,另一個點也隨之停止運動。當運動時間t=______秒時,以點P,Q,E,D為頂點的四邊形是平行四邊形。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某電腦公司銷售部為了定制下個月的銷售計劃,對20位銷售員本月的銷售量進行了統(tǒng)計,繪制成如圖所示的統(tǒng)計圖,則這20位銷售人員本月銷售量的平均數(shù)、中位數(shù)、眾數(shù)分別是( )

A.19,20,14
B.19,20,20
C.18.4,20,20
D.18.4,25,20

查看答案和解析>>

同步練習冊答案