已知:如圖,AB是半圓O上的直徑,E是的中點(diǎn),半徑OE交弦BC于點(diǎn)D,過(guò)點(diǎn)C作⊙O的切線交OE的延長(zhǎng)線于點(diǎn)F.BC=8,DE=2.
(Ⅰ)求⊙O的半徑;
(Ⅱ)求點(diǎn)F到⊙O的切線長(zhǎng).

【答案】分析:(1)利用切線的性質(zhì),設(shè)出半徑,再利用勾股定理列出方程即可得出半徑;
(2)欲求切線長(zhǎng),只需證明△OCF∽△ODC即可,利用相似三角形的性質(zhì)即可得出切線CF的長(zhǎng).
解答:解:(1)∵OE⊥BC,∴CD=BC=4.(1分)
設(shè)⊙O半徑為r,則OD=r-DE=r-2,
∵CF是⊙O的切線,
∴OC⊥CF,
在Rt△OCD中,有OC2=OD2+CD2,(3分)
即r2=(r-2)2+42,解得r=5.(4分)

(2)∵∠OCF=∠ODC,∠FOC=∠COD,
∴△OCF∽△ODC,(6分)
,∴.(8分)
點(diǎn)評(píng):本題綜合考查了切線的性質(zhì)和三角形相似的判定及其應(yīng)用,有一定的難度,要求學(xué)生能夠仔細(xì)讀題,把握已知,認(rèn)真完成題目要求.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,AB為⊙O的直徑,C、D是半圓弧上的兩點(diǎn),E是AB上除O外的一點(diǎn),AC與DE相交于F.①
AD
=
CD
,②DE⊥AB,③AF=DF.
(1)寫(xiě)出“以①②③中的任意兩個(gè)為條件,推出第三個(gè)(結(jié)論)”的一個(gè)正確命題,并加以證明;
(2)“以①②③中的任意兩個(gè)為條件,推出笫三個(gè)(結(jié)論)”可以組成多少個(gè)正確的命題?(不必說(shuō)明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•沈陽(yáng))已知,如圖,在平面直角坐標(biāo)系中,點(diǎn)A坐標(biāo)為(-2,0),點(diǎn)B坐標(biāo)為(0,2),點(diǎn)E為線段AB上的動(dòng)點(diǎn)(點(diǎn)E不與點(diǎn)A,B重合),以E為頂點(diǎn)作∠OET=45°,射線ET交線段0B于點(diǎn)F,C為y軸正半軸上一點(diǎn),且OC=AB,拋物線y=-
2
x2+mx+n的圖象經(jīng)過(guò)A,C兩點(diǎn).
(1)求此拋物線的函數(shù)表達(dá)式;
(2)求證:∠BEF=∠AOE;
(3)當(dāng)△EOF為等腰三角形時(shí),求此時(shí)點(diǎn)E的坐標(biāo);
(4)在(3)的條件下,當(dāng)直線EF交x軸于點(diǎn)D,P為(1)中拋物線上一動(dòng)點(diǎn),直線PE交x軸于點(diǎn)G,在直線EF上方的拋物線上是否存在一點(diǎn)P,使得△EPF的面積是△EDG面積的(2
2
+1)倍?若存在,請(qǐng)直接寫(xiě)出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年吉林省長(zhǎng)春市外國(guó)語(yǔ)學(xué)校九年級(jí)(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知:如圖,AB為⊙O的直徑,C、D是半圓弧上的兩點(diǎn),E是AB上除O外的一點(diǎn),AC與DE相交于F.①,②DE⊥AB,③AF=DF.
(1)寫(xiě)出“以①②③中的任意兩個(gè)為條件,推出第三個(gè)(結(jié)論)”的一個(gè)正確命題,并加以證明;
(2)“以①②③中的任意兩個(gè)為條件,推出笫三個(gè)(結(jié)論)”可以組成多少個(gè)正確的命題?(不必說(shuō)明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2003年全國(guó)中考數(shù)學(xué)試題匯編《圓》(09)(解析版) 題型:解答題

(2003•綿陽(yáng))已知:如圖,AB為⊙O的直徑,C、D是半圓弧上的兩點(diǎn),E是AB上除O外的一點(diǎn),AC與DE相交于F.①,②DE⊥AB,③AF=DF.
(1)寫(xiě)出“以①②③中的任意兩個(gè)為條件,推出第三個(gè)(結(jié)論)”的一個(gè)正確命題,并加以證明;
(2)“以①②③中的任意兩個(gè)為條件,推出笫三個(gè)(結(jié)論)”可以組成多少個(gè)正確的命題?(不必說(shuō)明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2003年四川省綿陽(yáng)市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2003•綿陽(yáng))已知:如圖,AB為⊙O的直徑,C、D是半圓弧上的兩點(diǎn),E是AB上除O外的一點(diǎn),AC與DE相交于F.①,②DE⊥AB,③AF=DF.
(1)寫(xiě)出“以①②③中的任意兩個(gè)為條件,推出第三個(gè)(結(jié)論)”的一個(gè)正確命題,并加以證明;
(2)“以①②③中的任意兩個(gè)為條件,推出笫三個(gè)(結(jié)論)”可以組成多少個(gè)正確的命題?(不必說(shuō)明理由)

查看答案和解析>>

同步練習(xí)冊(cè)答案