如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx+b的圖象與x軸交于點A(-3,0),與y軸交于點B,且與正比例函數(shù)數(shù)學(xué)公式的圖象的交點為C(m,4).
(1)求一次函數(shù)y=kx+b的解析式;
(2)若點D在第二象限,△DAB是以AB為直角邊的等腰直角三角形,直接寫出點D的坐標(biāo).

解:(1)∵點C(m,4)在直線上,

解得m=3;
∵點A(-3,0)與C(3,4)在直線y=kx+b(k≠0)上,

解得,
∴一次函數(shù)的解析式為

(2)過點D1⊥y軸于點E,過點D2⊥x軸于點F,
∵點D在第二象限,△DAB是以AB為直角邊的等腰直角三角形,
∴AB=BD1,AB=BD2,
∵∠D1BE+∠ABO=90°,
∠ABO+∠BAO=90°,
∴∠BAO=∠EBD1,
∵在△BED1和△AOB中,

∴△BED2≌△AOB(AAS),
∴BE=AO=3,D1E=BO=2,
即可得出點D的坐標(biāo)為(-2,5),
同理可得出:△BED2≌△AOB,
∴FA=BO=2,D2F=AO=3,
∴點D的坐標(biāo)為(-2,5,
綜上所述:點D的坐標(biāo)為(-2,5)或(-5,3).
分析:(1)首先利用待定系數(shù)法把C(m,4)代入正比例函數(shù)中,計算出m的值,進(jìn)而得到C點坐標(biāo),再利用待定系數(shù)法把A、C兩點坐標(biāo)代入一次函數(shù)y=kx+b中,計算出k、b的值,進(jìn)而得到一次函數(shù)解析式.
(2)利用△BED1≌△AOB,△BED2≌△AOB,即可得出點D的坐標(biāo).
點評:此題主要考查了相似三角形的判定與性質(zhì)以及待定系數(shù)法求一次函數(shù)解析式等知識,根據(jù)已知得出△BED1≌△AOB,△BED2≌△AOB是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點,其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點坐標(biāo)為(4,0),D點坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達(dá)點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時,請寫出點P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案