【題目】如圖,矩形中,,,點(diǎn)是邊上一點(diǎn),連接,把沿折疊,使點(diǎn)落在點(diǎn)處.當(dāng)為直角三角形時(shí),的長(zhǎng)為____.
【答案】4或2
【解析】
存在2種情況,一種是∠EC=90°,一種是∠EC=90°,對(duì)應(yīng)圖形如下,再利用勾股定理可求得C長(zhǎng).
情況一:當(dāng)∠EC=90°時(shí),圖形如下
∵△AE是△AEB折疊得到,∴∠AE=∠ABE=90°
∵∠EC=90°,∴點(diǎn)A、、C三點(diǎn)共線
∵AB=6,BC=8,∴AC=10,A=AB=6
∴C=4
情況二:當(dāng)∠EC=90°時(shí),圖形如下
∵∠EC=90°,∴∠EB=90°
∴四邊形ABE是矩形,E=AB=DC=6
∵△AE是△AEB折疊得到,∴A=AB=6
∵BC=8,∴AD=8,D=2
∴在Rt△DC中,C=2
故答案為:4或2
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,角α的兩邊與雙曲線y=(k<0,x<0)交于A、B兩點(diǎn),在OB上取點(diǎn)C,作CD⊥y軸于點(diǎn)D,分別交雙曲線y=、射線OA于點(diǎn)E、F,若OA=2AF,OC=2CB,則的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在單位長(zhǎng)度為1米的平面直角坐標(biāo)系中,曲線是由半徑為2米,圓心角為120°圓弧多次復(fù)制并首尾連接而成,現(xiàn)有一點(diǎn)P從A(A為坐標(biāo)原點(diǎn)),以每秒米的速度沿曲線向右運(yùn)動(dòng),則在第2020秒時(shí)點(diǎn)P的縱坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC中,AD⊥BC,E,F分別在AB,AC上.
(1)已知:DE⊥DF
①如圖1:若AB⊥AC,求證:△DAE~△DFC.
②連EF,若FE⊥AB于E(如圖2),且BD:CD:DA=2:3:4,EF=4,求BC的長(zhǎng).
(2)連EC,DE平分∠BEC(如圖3),且AD=2CD,CE=2AE,若DE=10,求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,CD是一高為4米的平臺(tái),AB是與CD底部相平的一棵樹(shù),在平臺(tái)頂C點(diǎn)測(cè)得樹(shù)頂A點(diǎn)的仰角α=30°,從平臺(tái)底部向樹(shù)的方向水平前進(jìn)3米到達(dá)點(diǎn)E,在點(diǎn)E處測(cè)得樹(shù)頂A點(diǎn)的仰角β=60°,求樹(shù)高AB(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖1,在中,,,點(diǎn)在上,交于,點(diǎn)是的中點(diǎn).
(1)寫出線段與線段的關(guān)系并證明;
(2)如圖2,將繞點(diǎn)逆時(shí)針旋轉(zhuǎn),其它條件不變,線段與線段的關(guān)系是否變化,寫出你的結(jié)論并證明;
(3)將繞點(diǎn)逆時(shí)針旋轉(zhuǎn)一周,如果,,直接寫出線段的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】合肥百大集團(tuán)新進(jìn)了40臺(tái)空調(diào)機(jī),60臺(tái)電冰箱,計(jì)劃調(diào)配給下屬的甲、乙兩個(gè)連鎖店銷售,其中70臺(tái)給甲連鎖店,30臺(tái)給乙連鎖店.兩個(gè)連鎖店銷售這兩種電器每臺(tái)的利潤(rùn)(元)如下表:
空調(diào)機(jī) | 電冰箱 | |
甲連鎖店 | 200 | 170 |
乙連鎖店 | 160 | 150 |
設(shè)集團(tuán)調(diào)配給甲連鎖店x臺(tái)空調(diào)機(jī),集團(tuán)賣出這100臺(tái)電器的總利潤(rùn)為y(元).
(1)求y關(guān)于x的函數(shù)關(guān)系式,并求出x的取值范圍;
(2)為了促銷,集團(tuán)決定僅對(duì)甲連鎖店的空調(diào)機(jī)每臺(tái)讓利a元銷售,其他的銷售利潤(rùn)不變,并且讓利后每臺(tái)空調(diào)機(jī)的利潤(rùn)仍然高于甲連鎖店銷售的每臺(tái)電冰箱的利潤(rùn),問(wèn)該集團(tuán)應(yīng)該如何設(shè)計(jì)調(diào)配方案,才能使總利潤(rùn)達(dá)到最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,為了將貨物裝入大型的集裝箱卡車,需要利用傳送帶AB將貨物從地面?zhèn)魉偷礁?/span>1.8米(即BD=1.8米)的操作平臺(tái)BC上.已知傳送帶AB與地面所成斜坡的坡角∠BAD=37°.
(1)求傳送帶AB的長(zhǎng)度;
(2)因?qū)嶋H需要,現(xiàn)在操作平臺(tái)和傳送帶進(jìn)行改造,如圖中虛線所示,操作平臺(tái)加高0.2米(即BF=0.2米),傳送帶與地面所成斜坡的坡度i=1:2.求改造后傳送帶EF的長(zhǎng)度.(精確到0.1米)(參考數(shù)值:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75, ≈1.41, ≈2.24)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四邊形ABCD是⊙O的內(nèi)接梯形,AB∥CD,AB=8cm,CD=6cm,⊙O的半徑是5cm,則梯形的面積是_____cm2.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com