【題目】我們知道:有些代數(shù)恒等式可以利用平面圖形的面積來表示,如:
就可以用如圖所示的面積關(guān)系來說明。
(1)請根據(jù)如圖寫出代數(shù)恒等式,并根據(jù)所寫恒等式計(jì)算:
(2)若求的值;
(3)現(xiàn)有如圖中的彩色卡片:A型、B型、C型,把這些卡片不重疊不留縫隙地貼在棱長為的100個立方體表面進(jìn)行裝飾,A型、B型、C型卡片的單價分別為0.7元/張、0.5元/張、0.4元/張,共需多少費(fèi)用?
【答案】(1); (2) (3)1260元
【解析】
(1)根據(jù)正方形的面積等于正方形里各個圖形的面積之和即可解答;找到與求出的代數(shù)恒等式的對應(yīng)字母:a=2x ,b= -y,c= -3,代入求出的代數(shù)恒等式即可.
(2)根據(jù)(1)中求出的代數(shù)恒等式,先求出,再把整體代入即可求值.
(3)先確定立方體的一個面需要A型、B型、C型卡片各幾張,需多少費(fèi)用,再求1個,100個的費(fèi)用.
(1)
(2)
∵
∴
(3)
故立方體一面需A型卡片1張、B型卡片2張、C型卡片1張,需:
0.7+0.5×2+0.4=2.1元
100個小立方體需:2.1×6×100=1260元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】每年11月的最后一個星期四是感恩節(jié),小龍調(diào)查了初三年級部分同學(xué)在感恩節(jié)當(dāng)天將以何種方式表達(dá)感謝幫助過自己的人.他將調(diào)查結(jié)果分為如下四類:A類﹣﹣當(dāng)面致謝;B類﹣﹣打電話;C類﹣﹣發(fā)短信息或微信;D類﹣﹣寫書信.他將調(diào)查結(jié)果繪制成如圖不完整的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖:
請你根據(jù)圖中提供的信息完成下列各題:
(1)補(bǔ)全條形統(tǒng)計(jì)圖;
(2)在A類的同學(xué)中,有3人來自同一班級,其中有1人學(xué)過主持.現(xiàn)準(zhǔn)備從他們3人中隨機(jī)抽出兩位同學(xué)主持感恩節(jié)主題班會課,請你用樹狀圖或表格求出抽出的兩人都沒有學(xué)過主持的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知三角形的兩邊分別是2cm和3cm,現(xiàn)從長度分別為1cm、2cm、3cm、4cm、5cm、6cm六根小木棒中隨機(jī)抽一根,抽到的木棒能作為該三角形第三邊的概率是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有2部不同的電影A、B,甲、乙、丙3人分別從中任意選擇1部觀看.
(1)求甲選擇A部電影的概率;
(2)求甲、乙、丙3人選擇同一部電影的概率(請用畫樹狀圖的方法給出分析過程,并求出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,∠BAD的平分線交BC于點(diǎn)E,∠ABC的平分線交AD于點(diǎn)F,若BF=12,AB=10,則AE的長為( )
A.13
B.14
C.15
D.16
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,BD平分∠ABC交AC于點(diǎn)D,AE∥BD交CB的延長線于點(diǎn)E.若∠E=35°,則∠BAC的度數(shù)為( )
A. 40° B. 45° C. 60° D. 70°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊三角形紙片ABC中,點(diǎn)D在邊AB(不包含端點(diǎn)A、B)上運(yùn)動,連接CD,將∠ADC對折,點(diǎn)A落在直線CD上的點(diǎn)A′處,得到折痕DE;將∠BDC對折,點(diǎn)B落在直線CD上的點(diǎn)B′處,得到折痕DF.
(1)若∠ADC=80°,求∠BDF的度數(shù);
(2)試問∠EDF的大小是否會隨著點(diǎn)D的運(yùn)動而變化?若不變,求出∠EDF的大。蝗糇兓,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為4的正方形ABCD中,P是BC邊上一動點(diǎn)(不含B、C兩點(diǎn)),將 ABP沿直線AP翻折,點(diǎn)B落在點(diǎn)E處;在CD上有一點(diǎn)M,使得將 CMP沿直線MP翻折后,點(diǎn)C落在直線PE上的點(diǎn)F處,直線PE交CD于點(diǎn)N,連接MA,NA.則以下結(jié)論中正確的個數(shù)有( ).
① CMP∽ BPA;
②四邊形AMCB的面積最大值為10;
③當(dāng)P為BC中點(diǎn)時,AE為線段NP的中垂線;
④線段AM的最小值為2 ;
⑤當(dāng) ABP≌ AND時,BP=4 -4.
A.①②③
B.②③⑤
C.①④⑤
D.①②⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形網(wǎng)格中,小格的頂點(diǎn)叫做格點(diǎn).三個頂點(diǎn)都在網(wǎng)格上的三角形叫做格點(diǎn)三角形.小華已在左邊的正方形網(wǎng)格中作出了格點(diǎn)△ABC.請你在右邊的兩個正方形網(wǎng)格中各畫出一個不同的格點(diǎn)三角形,使得三個網(wǎng)格中的格點(diǎn)三角形都相似(不包括全等).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com