【題目】如圖,在△ABC中,∠B=60°,∠C=20°,AD為△ABC的高,AE為角平分線.求∠EAD的度數.
【答案】20°.
【解析】
試題此題主要考查了三角形的內角和定理,要熟練掌握,解答此題的關鍵是要明確:三角形的內角和是180°.此題還考查了三角形的外角的性質和應用,要熟練掌握,解答此題的關鍵是要明確:①三角形的外角和為360°.②三角形的一個外角等于和它不相鄰的兩個內角的和.③三角形的一個外角大于和它不相鄰的任何一個內角.首先根據三角形的內角和定理,求出∠BAC的度數是多少;然后根據AE為角平分線,求出∠BAE的度數是多少;最后在Rt△ABD中,求出∠BAD的度數,即可求出∠EAD的度數是多少.
試題解析:∵∠B=60°,∠C=20°, ∴∠BAC=180°﹣60°﹣20°=100°,
∵AE為角平分線, ∴∠BAE=100°÷2=50°, ∵AD為△ABC的高, ∴∠ADB=90°,
∴∠BAD=90°﹣60°=30°, ∴∠EAD=∠BAE﹣∠BAD=50°﹣30°=20°,
科目:初中數學 來源: 題型:
【題目】為了估算河的寬度,我們可以在河對岸選定一個目標作為點A,再在河的這一邊選定點B和C,使AB⊥BC,然后,再選點E,使EC⊥BC,用視線確定BC和AE的交點D.此時如果測得BD=120米,DC=60米,EC=50米,求兩岸間的大致距離AB.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知拋物線y=ax2+bx+c經過點A(0,3)、B(4,3)、C(1,0)、
(1)填空:拋物線的對稱軸為直線x= , 拋物線與x軸的另一個交點D的坐標為;
(2)求該拋物線的解析式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直角坐標系中,△ABC的頂點都在網格點上,其中,C點坐標為(1,2)
(1)寫出點A、B的坐標:A( , )、B( , )
(2)將△ABC先向左平移1個單位長度,再向上平移2個單位長度,得到△A′B′C′,畫出△A′B′C′
(3)寫出三個頂點坐標A′( 、 )、B′( 、 )、C′ ( 、 )
(4)求△ABC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,將△ABC繞點C按順時針方向旋轉n度后,得到△DEC,點D剛好落在AB邊上.
(1)求n的值;
(2)若F是DE的中點,判斷四邊形ACFD的形狀,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC 中,AB=AC,CD是∠ACB的平分線,DE∥BC,交AC于點 E.
(1)求證:DE=CE.
(2)若∠CDE=35°,求∠A 的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,⊙O△ABC的三條邊所得的弦長相等,則下列說法正確的是( )
A.點O是△ABC的內心
B.點O是△ABC的外心
C.△ABC是正三角形
D.△ABC是等腰三角形
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)觀察推理:如圖 1,△ABC 中,∠ACB=90°,AC=BC,直線 L 過點C,點 A,B 在直線 L 同側,BD⊥L, AE⊥L,垂足分別為D,E
求證:△AEC≌△CDB
(2)類比探究:如圖 2,Rt△ABC 中,∠ACB=90°,AC=4,將斜邊 AB 繞點 A 逆時針旋轉 90°至 AB’, 連接B’C,求△AB’C 的面積
(3)拓展提升:如圖 3,等邊△EBC 中,EC=BC=3cm,點 O 在 BC 上且 OC=2cm,動點 P 從點 E 沿射線EC 以 1cm/s 速度運動,連接 OP,將線段 OP 繞點O 逆時針旋轉 120°得到線段 OF,設點 P 運動的時間為t 秒。
當t= 秒時,OF∥ED
若要使點F 恰好落在射線EB 上,求點P 運動的時間t
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com