【題目】如圖,已知在△ABC中,AB=AC,D為BC邊的中點,過點D作DE⊥AB,DF⊥AC,垂足分別為E,F(xiàn).

(1)求證:DE=DF;

(2)若∠A=,BE=5.

①求證: ②求△ABC的周長.

【答案】(1)證明見解析;(2)①證明見解析;②60.

【解析】試題分析:(1)根據(jù)DE⊥AB,DF⊥AC,AB=AC,求證∠B=∠C.再利用DBC的中點,求證△BED≌△CFD即可得出結(jié)論.

(2)根據(jù)AB=AC,∠A=60°,得出△ABC為等邊三角形.然后求出∠BDE=30°,再根據(jù)題目中給出的已知條件即可得出結(jié)論

試題解析:(1)證明:∵DEAB,DFAC,

∴∠BED=CFD=90°,

AB=AC,

∴∠B=C(等邊對等角).

DBC的中點,

BD=CD.

BEDCFD中,

∴△BED≌△CFD(AAS).

DE=DF

(2)①∵AB=AC,∠A=60°,

∴△ABC為等邊三角形.

∴∠B=60°,

∵∠BED=90°,

∴∠BDE=30°,

∴BE=BD,

②∵BE=5,

∴BD=10,

∴BC=2BD=20,

∴△ABC的周長為60.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形ABCD內(nèi)接于⊙O,直徑AC=6,對角線AC、BD交于E點,且AB=BD,EC=1,則AD的長為(
A.
B.
C.
D.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,三角形ABO中,A(﹣2,﹣3)、B(2,﹣1),三角形A′B′O′是三角形ABO平移之后得到的圖形,并且O的對應(yīng)點O′的坐標為(4,3).

(1)求三角形ABO的面積;

(2)作出三角形ABO平移之后的圖形三角形A′B′O′,并寫出A′、B′兩點的坐標分別為A′   、B′   

(3)P(x,y)為三角形ABO中任意一點,則平移后對應(yīng)點P′的坐標為__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在電線桿CD上的C處引拉線CE、CF固定電線桿,拉線CE和地面所成的角∠CED=60°,在離電線桿6米的B處安置高為1.5米的測角儀AB,在A處測得電線桿上C處的仰角為30°,求拉線CE的長(結(jié)果保留小數(shù)點后一位,參考數(shù)據(jù): ≈1.41, ≈1.73).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知y是x﹣3的正比例函數(shù),且當x=2時,y=﹣3.

(1)求y與x之間的函數(shù)關(guān)系式;

(2)求當x=1時,y的值;

(3)求當y=﹣12時,x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖1,已知,可得=______;

(2)如圖2,在(1)的條件下,如果平分,=________

(3)如圖3,在(1)(2)的條件下,如果,=_________

(4)嘗試解決下面問題:如圖4,,的平分線,,的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】感知:如圖1,在ABC中,∠ABC=42°,ACB=72°,點DAB上一點,EAC上一點,BE、CD相交于點F.

(1)若∠ACD=35°,ABE=20°,求∠BFC的度數(shù);

(2)若CD平分∠ACB,BE平分∠ABC,求∠BFC的度數(shù);

探究:如圖2,在ABC中,BE平分∠ABCCD平分∠ACB,寫出∠BFC與∠A之間的數(shù)量關(guān)系,并說明理由;

應(yīng)用:如圖3,在ABC中,BD平分∠ABCCD平分外角∠ACE,請直接寫出∠BDC與∠A之間的數(shù)量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,王虎使一長為4 cm,寬為3 cm的長方形木板,在桌面上做無滑動地翻滾(順時針方向),木板上點A位置變化為AA1A2,其中第二次翻滾被桌面上一小木塊擋住,使木板與桌面成30°角,則點A翻滾到A2位置時共走過的路徑長為?

查看答案和解析>>

同步練習冊答案