【題目】如圖,△ABC中,∠ABC=45°,過C作AB邊上的高CD,H為BC邊上的中點,連接DH,CD上有一點F,且AD=DF,連接BF并延長交AC于E,交DH于G.
(1)若AC=5,DH=2,求DF的長.
(2)若AB=CB,求證:BG=AE.
【答案】(1);(2)證明見解析.
【解析】
(1)只要證明△ADC≌△FDB(SAS),即可推出BF=AC=5,再利用勾股定理即可解決問題;
(2)如圖,連接CG,AG.想辦法證明GA=GB=GC,△AEG是等腰直角三角形即可解決問題.
(1)∵CD⊥AB,
∴∠CDB=∠CDA=90°,
∵∠ABC=45°,
∴DC=DB,
∵AD=DF,
∴△ADC≌△FDB(SAS),
∴BF=AC=5,
∵CH=HB,
∴BC=2DH=4,
∴BD=DC=2,
在Rt△DFB中,DF===.
(2)如圖,連接CG,AG.
∵△ADC≌△FDB,
∴∠ACD=∠FBD,
∵∠CFE=∠BFD,
∴∠CEF=∠FDB=90°,
∴∠CEF=90°,
∴BE⊥AC,
∵BA=BC,
∴AE=EC,
∴GC=GA,
∵GH⊥BC,HC=HB,
∴GC=GB,
∴GB=AG,
∵∠ABG=∠CBG=22.5°,
∴∠GCB=∠GBC=22.5°,∠GAB=∠GBA=22.5°,
∴∠CGE=45°,∠AEG=45°,
∴△AEG是等腰直角三角形,
∴AG=BG=AE.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長線分別交AD于點E、F,連結(jié)BD、DP,BD與CF相交于點H,給出下列結(jié)論:①△DFP~△BPH;②;③PD2=PHCD;④,其中正確的是______(寫出所有正確結(jié)論的序號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點P的坐標(biāo)為(-3,4),作出點P關(guān)于x軸對稱的點P1,稱為第1次變換;再作出點P1關(guān)于y軸對稱的點P2,稱為第2次變換;再作點P2關(guān)于x軸對稱的點P3,稱為第3次變換,…,依次類推,則第2019次變換得到的點P2019的坐標(biāo)為 ____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AB=5cm,AC=3cm,動點P從點B出發(fā)沿射線BC以1cm/s的速度移動,設(shè)運動的時間為t秒,當(dāng)△ABP為等腰三角形時,t的取值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,過點的直線與直線相交于點.
(1)直線的關(guān)系式為 ;直線的關(guān)系式為 (直接寫出答案,不必寫過程).
(2)求的面積.
(3)若有一動點沿路線運動,當(dāng)時,求點 坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,拋物線y=x2+x﹣與x軸交于A、B兩點(點A在點B的左側(cè))與y軸交于點C,直線BE⊥BC與點B,與拋物線的另一交點為E.
(1)如圖1,求點E的坐標(biāo);
(2)如圖2,若點P為x軸下方拋物線上一動點,過P作PG⊥BE與點G,當(dāng)PG長度最大時,在直線BE上找一點M,使得△APM的周長最小,并求出周長的最小值.
(3)如圖3,將△BOC在射線BE上,設(shè)平移后的三角形為△B′O′C′,B′在射線BE上,若直線B′C′分別與x軸、拋物線的對稱軸交于點R、T,當(dāng)△O′RT為等腰三角形時,求R的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABD是⊙O的內(nèi)接三角形,E是弦BD的中點,點C是⊙O外一點且∠DBC=∠A,連接OE延長與圓相交于點F,與BC相交于點C.
(1)求證:BC是⊙O的切線;
(2)若⊙O的半徑為6,BC=8,求弦BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某班將舉行“數(shù)學(xué)知識競賽”活動,班長安排小明購買獎品,下面兩圖是小明買回獎品時與班長的對話情境:
請根據(jù)上面的信息,解決問題:
(1)試計算兩種筆記本各買了多少本?
(2)請你解釋:小明為什么不可能找回68元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com