【題目】如圖1是一座立交橋的示意圖(道路寬度忽略不計), A為入口, F,G為出口,其中直行道為AB,CG,EF,且AB=CG=EF ;彎道為以點O為圓心的一段弧,且弧BC,弧ED,弧CD所對的圓心角均為90°.甲、乙兩車由A口同時駛?cè)肓⒔粯,均?/span>10m/s的速度行駛,從不同出口駛出. 其間兩車到點O的距離y(m)與時間x(s)的對應關(guān)系如圖2所示.結(jié)合題目信息,下列說法錯誤的是( )
A. 甲車在立交橋上共行駛8s B. 從F口出比從G口出多行駛40m
C. 甲車從F口出,乙車從G口出 D. 立交橋總長為150m
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB、CD相交于點O.已知∠BOD=75°,OE把∠AOC分成兩個角,且∠AOE:∠EOC=2:3.
(1)求∠AOE的度數(shù);
(2)若OF平分∠BOE,問:OB是∠DOF的平分線嗎?試說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=2x+2與y軸交于A點,與反比例函數(shù)y=(x>0)的圖象交于點M,過M作MH⊥x軸于點H,且tan∠AHO=2.
(1)求k的值;
(2)在y軸上是否存在點B,使以點B、A、H、M為頂點的四邊形是平行四邊形?如果存在,求出B點坐標;如果不存在,請說明理由;
(3)點N(a,1)是反比例函數(shù)y=(x>0)圖象上的點,在x軸上有一點P,使得PM+PN最小,請求出點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學要在一塊三角形花圃里種植兩種不同的花草,同時擬從A點修建一條小路到邊BC.
(1)若要使修建小路所用的材料最少,請在下圖中畫出小路AD;
(2)若要使小路兩側(cè)種植不同花草的面積相等,請在下圖中畫出小路AE,其中E點滿足的條件是________,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ABC=90°,AB=3,BC=4.Rt△MPN中,∠MPN=90°,點P在AC上,PM交AB于點E,PN交BC于點F,當PE=2PF時,AP=________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,邊長為1的正方形ABCD的對角線AC,BD相交于點O,有直角∠MPN,使直角頂點P與點O重合,直角邊PM,PN分別與OA,OB重合,然后逆時針旋轉(zhuǎn)∠MPN,旋轉(zhuǎn)角為θ(0°<θ<90°),PM,PN分別交AB,BC于E,F(xiàn)兩點,連接EF交OB于點G,則下列結(jié)論:(1)EF=OE;(2)S四邊形OEBF∶S正方形ABCD=1∶4;(3)BE+BF=OA;(4)在旋轉(zhuǎn)過程中,當△BEF與△COF的面積之和最大時,AE=;(5)OG·BD=AE2+CF2,其中正確的是__.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在正方形ABCD中,兩條對角線相交于點O,∠BAC的平分線交BD于點E,若正方形ABCD的周長是16cm,則DE=____________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩城相距800千米,一輛客車從甲城開往乙城,車速為千米/小時,同時一輛出租車比乙城開往甲城,車速為90千米/小時.
(1)設(shè)客車行駛時間為(小時),當時,客車與乙城的距離為_______千米(用含的代數(shù)式表示);
(2)已知,丙城在甲、乙兩城之間,且與甲城相距260千米.
①求客車與出租車相距200千米時客車的行駛時間;(列方程解答)
②已知客車和出租車在甲、乙之間的處相遇時,出租車乘客小李突然接到開會通知,需要立即返回,此時小李有兩種返回乙城的方案;
方案一:繼續(xù)乘坐出租車到丙城,加油后立刻返回乙城,出租車加油的時間忽略不計;
方案二:在處換乘客車返回乙城.
試通過計算,分析小李選擇哪種方案能更快到達乙城?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com