【題目】如圖,AB是半圓O的直徑,點C在半圓O上,AB=5cm,AC=4cm.D是弧BC上的一個動點(含端點B,不含端點C),連接AD,過點CCEADE,連接BE,在點D移動的過程中,BE的取值范圍是____

【答案】 ﹣2≤BE<3

【解析】

由∠AEC=90°E在以AC為直徑的⊙M上(不含點C、可含點N),從而得BE最短時,即為連接BM與⊙M的交點(圖中點E′點),在RtBCM中利用勾股定理求得BM=,從而得BE長度的最小值BE′=BM-ME′=-2;由BE最長時即EC重合,根據(jù)BC=3且點E與點C不重合,得BE<3,從而得出答案.

如圖,

由題意知,∠AEC=90°,
E在以AC為直徑的⊙M

上(不含點C、可含點N),
BE最短時,即為連接BM與⊙M的交點(圖中點E′點),
AB=5,AC=4,
BC=3,CM=2,
BM===
BE長度的最小值BE′=BM-ME′=-2,
BE最長時,即EC重合,
BC=3,且點E與點C不重合,
BE<3,
所以-2≤BE<3.

故答案是:-2≤BE<3.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某貯水塔在工作期間,每小時的進水量和出水量都是固定不變的.從凌晨4點到早8點只進水不出水,8點到12點既進水又出水,14點到次日凌晨只出水不進水.下圖是某日水塔中貯水量y(立方米)與x(時)的函數(shù)圖象.

1)求每小時的進水量;

2)當(dāng)8x12時,求yx之間的函數(shù)關(guān)系式;

3)從該日凌晨4點到次日凌晨,當(dāng)水塔中的貯水量不小于28立方米時,直接寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,BD,CE分別是ABC的兩邊上的高,過DDGBCG,分別交CEBA的延長線于F,H,求證:

(1)DG2BG·CG

(2)BG·CGGF·GH.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,P1、P2是對角線BD的三等分點.求證:四邊形APlCP2是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某水果生產(chǎn)基地,某天安排30名工人采摘枇杷或草莓(每名工人只能做其中一項工作),并且每人每天摘0.4噸枇杷或0.3噸草莓,當(dāng)天的枇杷售價每噸2000元,草莓售價每噸3000元,設(shè)安排其中x名工人采摘枇杷,兩種水果當(dāng)天全部售出,銷售總額達y元.

1)求yx之間的函數(shù)關(guān)系式;

2)若要求當(dāng)天采摘枇杷的數(shù)量不少于草莓的數(shù)量,求銷售總額的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠ABC=120°,OABC的外接圓,點P上的一個動點.

(1)求∠AOC的度數(shù);

(2)若⊙O的半徑為2,設(shè)點P到直線AC的距離為x,圖中陰影部分的面積為y,求yx之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍.\

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法不正確的是(  )

A. 某種彩票中獎的概率是,買1000張該種彩票一定會中獎

B. 了解一批電視機的使用壽命適合用抽樣調(diào)查

C. 若甲組數(shù)據(jù)的標(biāo)準(zhǔn)差S=0.31,乙組數(shù)據(jù)的標(biāo)準(zhǔn)差S=0.25,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定

D. 在一個裝有白球和綠球的袋中摸球,摸出黑球是不可能事件

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知的頂點坐標(biāo)分別是,.過點的直線相交于點.若的面積比為,則點的坐標(biāo)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠ACB=90°,tanA=,AB=13,將△ABC繞點C順時針旋轉(zhuǎn)90°得到△A'B'C,P為線段A′B′上的動點,以點P為圓心,PA′長為半徑作⊙P,當(dāng)⊙P與△ABC的邊相切時,⊙P的半徑為_____

查看答案和解析>>

同步練習(xí)冊答案