【題目】如圖,在四邊形ABCD中,E、F分別是CD、AB延長線上的點,連結(jié)EF,分別交AD、BC于點G、H.若∠1=∠2,∠A=∠C,試說明AD∥BC和AB∥CD.
請完成下面的推理過程,并填空(理由或數(shù)學式):
∵∠1=∠2( )
∠1=∠AGH( )
∴∠2=∠AGH( )
∴AD∥BC( )
∴∠ADE=∠C( )
∵∠A=∠C( )
∴∠ADE=∠A
∴AB∥CD( )
科目:初中數(shù)學 來源: 題型:
【題目】某農(nóng)場擬建一間矩形種牛飼養(yǎng)室,飼養(yǎng)室的一面靠現(xiàn)有墻(墻足夠長),已知計劃中的建筑材料可建圍墻的總長為為50m.設(shè)飼養(yǎng)室長為x(m),占地面積為y(m2).
(1)如圖1,問飼養(yǎng)室長x為多少時,占地面積y最大?
(2)如圖2,現(xiàn)要求在圖中所示位置留2m寬的門,且仍使飼養(yǎng)室的占地面積最大。小敏說:“只要飼養(yǎng)室長比(1)中的長多2m就行了.”
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB和CD相交于O點,OE⊥CD,OC平分∠AOF,∠EOF=56°,
(1)求∠BOD的度數(shù);
(2)寫出圖中所有與∠BOE互余的角,它們分別是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場家電銷售部有營業(yè)員20名,為了調(diào)動營業(yè)員的積極性,決定實行目標管理,即確定一個月的銷售額目標,根據(jù)目標完成情況對營業(yè)員進行適當?shù)莫剳停疄榇耍虉鼋y(tǒng)計了這20名營業(yè)員在某月的銷售額,數(shù)據(jù)如下:(單位:萬元)
25 26 21 17 28 26 20 25 26 30
20 21 20 26 30 25 21 19 28 26
(1)請根據(jù)以上信息完成下表:
銷售額(萬元) | 17 | 19 | 20 | 21 | 25 | 26 | 28 | 30 |
頻數(shù)(人數(shù)) | 1 | 1 | 3 | 3 |
(2)上述數(shù)據(jù)中,眾數(shù)是 萬元,中位數(shù)是 萬元,平均數(shù)是 萬元;
(3)如果將眾數(shù)作為月銷售額目標,能否讓至少一半的營業(yè)員都能達到目標?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖2,AB=AC,BE⊥AC于E,CF⊥AB于F,BE,CF交于D,則以下結(jié)論:①△ABE≌△ACF;②△BDF≌△CDE;③點D在∠BAC的平分線上.正確的是( 。
A. ① B. ② C. ①② D. ①②③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料: 某種型號的溫控水箱的工作過程是:接通電源后,在初始溫度20℃下加熱水箱中的水;當水溫達到設(shè)定溫度80℃時,加熱停止;此后水箱中的水溫開始逐漸下降,當下降到20℃時,再次自動加熱水箱中的水至80℃時,加熱停止;當水箱中的水溫下降到20℃時,再次自動加熱,…,按照以上方式不斷循環(huán).
小明根據(jù)學習函數(shù)的經(jīng)驗,對該型號溫控水箱中的水溫隨時間變化的規(guī)律進行了探究.發(fā)現(xiàn)水溫y是時間x的函數(shù),其中y(單位:℃)表示水箱中水的溫度.x(單位:min)表示接通電源后的時間.
下面是小明的探究過程,請補充完整:
(1)下表記錄了32min內(nèi)14個時間點的溫控水箱中水的溫度y隨時間x的變化情況
接通電源后的時間x | 0 | 1 | 2 | 3 | 4 | 5 | 8 | 10 | 16 | 18 | 20 | 21 | 24 | 32 | … |
水箱中水的溫度y | 20 | 35 | 50 | 65 | 80 | 64 | 40 | 32 | 20 | m | 80 | 64 | 40 | 20 | … |
m的值為;
(2)①當0≤x≤4時,寫出一個符合表中數(shù)據(jù)的函數(shù)解析式; 當4<x≤16時,寫出一個符合表中數(shù)據(jù)的函數(shù)解析式;
②如圖,在平面直角坐標系xOy中,描出了上表中部分數(shù)據(jù)對應(yīng)的點,根據(jù)描出的點,畫出當0≤x≤32時,溫度y隨時間x變化的函數(shù)圖象:
(3)如果水溫y隨時間x的變化規(guī)律不變,預測水溫第8次達到40℃時,距離接通電源min.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,G 為 BC 的中點,且 DG⊥BC,DE⊥AB 于 E,DF⊥AC 于 F, BE=CF.
(1)求證:AD 是∠BAC 的平分線;
(2)如果 AB=8,AC=6,求 AE 的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著地球上的水資源日益枯竭,各級政府越來越重視節(jié)約用水.某市民生活用水按“階梯水價”方式進行收費,人均月生活用水收費標準如圖所示,圖中 x 表示人均月生活用水的噸數(shù),y 表示收取的人均月生活用水費(元).請根據(jù)圖象信息,回答下列問題:
(1)該市人均月生活用水的收費標準是:不超過 5 噸,每噸按 元收取; 超過 5 噸的部分,每噸按 元收;
(2)當 x>5 時,求 y 與 x 的函數(shù)關(guān)系式;
(3)若某個家庭有 5 人,五月份的生活用水費共 76 元,則該家庭這個月用了多少噸生活用水?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com