【題目】如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長線分別交AD于點E、F,連接BD、DP,BD與CF相交于點H.給出下列結論:
①△ABE≌△DCF;② ;③DP2=PHPB;④ .
其中正確的是 . (寫出所有正確結論的序號)
【答案】①③
【解析】解:①∵△BPC是等邊三角形,
∴BP=PC=BC,∠PBC=∠PCB=∠BPC=60°,
∵四邊形ABCD為正方形,
∴AB=BC=CD,∠A=∠ADC=∠BCD=90°
∴∠ABE=∠DCF=30°,
在△ABE與△CDF中,
,
∴△ABE≌△DCF(ASA),
故①正確;
②∵PC=CD,∠PCD=30°,
∴∠PDC=75°,
∴∠FDP=15°,
∵∠DBA=45°,
∴∠PBD=15°,
∴∠FDP=∠PBD,
∵∠DFP=∠FCB=∠BPC=60°,
∴△DFP∽△BPH,
∴ = = =tan∠DCF= ,
故②錯誤;
③∵∠FDP=15°,
∴∠PDH=30°
∴∠PDH=∠PCD,
∵∠DPH=∠DPC,
∴△DPH∽△CDP,
∴ = ,
∴DP2=PHCD,
∵PB=CD,
∴DP2=PHPB,
故③正確;
④設正方形ABCD的邊長是3,
∵△BPC為正三角形,
∴∠PBC=60°,PB=BC=AD=3,
∴∠EBA=30°,
∴AE=ABtan30°=3× = ,
BE= = =2 ,
∴EP=BE﹣BP=2 ﹣3,
S△BED=SABD﹣SABE= ×3×3﹣ ×3× = ,
S△EPD= S△BED= × = ,
∴ = = ,
故④錯誤;
∴正確的是①③;
故答案為:①③.
①根據等邊三角形的性質和正方形的性質,得到∠ABE=∠DCF,∠A=∠ADC,AB=CD,證得△ABE≌△DCF,①正確;
②由于∠FDP=∠PBD,∠DFP=∠BPC=60°,推出△DFP∽△BPH,得到 = = =tan∠DCF= ,②錯誤;
③由于∠PDH=∠PCD=30°,∠DPH=∠DPC,推出△DPH∽△CPD,得到 = ,PB=CD,等量代換得到DP2=PHPB,③正確;
④設正方形ABCD的邊長是3,則PB=BC=AD=3,求得∠EBA=30°,得出AE、BE、EP的長,由S△BED=SABD﹣SABE , S△EPD= S△BED , 求得 = ,④錯誤;即可得出結論.
科目:初中數學 來源: 題型:
【題目】如圖,△POA1、△P2A1A都是等腰直角三角形,直角頂點P、P2在函數y= (x>0)的圖象上,斜邊OA1、A1A都在x軸上,則點A的坐標是( )
A.(4,0)
B.(4 ,0)
C.(2,0)
D.(2 ,0)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】模型介紹:古希臘有一個著名的“將軍飲馬問題”,大致內容如下:古希臘一位將軍,每天都要巡查河岸側的兩個軍營A、B,他總是先去A營,再到河邊飲馬,之后再去B營,如圖 ①,他時常想,怎么走才能使每天的路程之和最短呢?
大數學家海倫曾用軸對稱的方法巧妙的解決了這問題
如圖②,作B關于直線l的對稱點B′,連接AB′與直線l交于點C,點C就是所求的位置.
請你在下列的閱讀、應用的過程中,完成解答.
(1)理由:如圖③,在直線L上另取任一點C′,連接AC′,BC′,B′C′,
∵直線l是點B,B′的對稱軸,點C,C′在l上
∴CB= , C′B=
∴AC+CB=AC+CB′= .
在△AC′B′中,∵AB′<AC′+C′B′,∴AC+CB<AC′+C′B′即AC+CB最小
歸納小結:
本問題實際是利用軸對稱變換的思想,把A、B在直線的同側問題轉化為在直線的兩側,從而可利用“兩點之間線段最短”,即轉化為“三角形兩邊之和大于第三邊”的問題加以解決(其中C為AB′與l的交點,即A、C、B′三點共線).
本問題可拓展為“求定直線上一動點與直線外兩定點的距離和的最小值”問題的數學模型.
(2)模型應用
如圖 ④,正方形ABCD的邊長為2,E為AB的中點,F是AC上一動點.
求EF+FB的最小值
分析:解決這個問題,可以借助上面的模型,由正方形的對稱性可知,B與D關于直線AC對稱,連結ED交AC于F,則EF+FB的最小值就是線段的長度,EF+FB的最小值是 .
如圖⑤,已知⊙O的直徑CD為4,∠AOD的度數為60°,點B是 的中點,在直徑CD上找一點P,使BP+AP的值最小,則BP+AP的最小值是;
如圖⑥,一次函數y=﹣2x+4的圖象與x,y軸分別交于A,B兩點,點O為坐標原點,點C與點D分別為線段OA,AB的中點,點P為OB上一動點,求:PC+PD的最小值,并寫出取得最小值時P點坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校積極開展“陽光體育”活動,共開設了跳繩、足球、籃球、跑步四種運動項目,為了解學生最喜愛哪一種項目,隨機抽取了部分學生進行調查,并繪制了如下的條形統計圖和扇形統計圖(部分信息未給出).
(1)求本次被調查的學生人數;
(2)補全條形統計圖;
(3)該校共有1200名學生,請估計全校最喜愛籃球的人數比最喜愛足球的人數多多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】下列四個命題:
①對角線互相垂直的平行四邊形是正方形;
② ,則m≥1;
③過弦的中點的直線必經過圓心;
④圓的切線垂直于經過切點的半徑;
⑤圓的兩條平行弦所夾的弧相等;
其中正確的命題有( )個.
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:把Rt△ABC和Rt△DEF按如圖(1)擺放(點C與點E重合),點B、C(E)、F在同一條直線上,∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=9cm.如圖(2),△DEF從圖(1)的位置出發(fā),以1cm/s的速度沿CB向△ABC勻速移動,在△DEF移動的同時,點P從△ABC的頂點B出發(fā),以2cm/s的速度沿BA勻速移動,當△DEF的頂點D移動到AC邊上時,△DEF停止移動,點P也隨之停止移動,DE與AC相交于點Q,連接PQ,設移動時間為t(s)(0<t<4.5).
解答下列問題:
(1)當t為何值時,點A在線段PQ的垂直平分線上?
(2)連接PE,
設四邊形APEC的面積為y(cm2),求y與t之間的函數關系式,是否存在某一時刻t,使面積y最小?若存在,求出y的最小值;若不存在,說明理由;
(3)是否存在某一時刻t,使P、Q、F三點在同一條直線上?若存在,求出此時t的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c與x軸的一個交點為A(3,0),與y軸的交點為B(0,3),其頂點為C,對稱軸為x=1.
(1)求拋物線的解析式;
(2)已知點M為y軸上的一個動點,當△ABM為等腰三角形時,求點M的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC和△DEF均是邊長為4的等邊三角形,△DEF的頂點D為△ABC的一邊BC的中點,△DEF繞點D旋轉,且邊DF,DE始終分別交△ABC的邊AB,AC于點H,G,圖中直線BC兩側的圖形關于直線BC成軸對稱.連結HH′,HG,GG′,H′G′,其中HH′、GG′分別交BC于點I,J.
(1)求證:△DHB∽△GDC;
(2)設CG=x,四邊形HH′G′G的面積為y,
①求y關于x的函數解析式和自變量x的取值范圍.
②求當x為何值時,y的值最大,最大值為多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O分別與BC,AC交于點D,E,過點D作⊙O的切線DF,交AC于點F.
(1)求證:DF⊥AC;
(2)若⊙O的半徑為4,∠CDF=22.5°,求陰影部分的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com