(2002•達州)如圖,在△ABC中,D、E分別是AB、AC上一點,下面有四個條件:
(1);(2);(3);(4)
其中一定能判定DE∥BC有( )

A.1個
B.2個
C.3個
D.4個
【答案】分析:根據(jù)對應(yīng)線段成比例,兩直線平行進行分析.
解答:解:根據(jù)對應(yīng)線段成比例兩直線平行,
,
得到(1)(2)(3)正確,(4)的線段不對應(yīng),所以不正確.
故選C.
點評:本題考查學生對對應(yīng)線段成比例兩直線平行的理解及運用.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《圖形的相似》(03)(解析版) 題型:解答題

(2002•達州)如圖,O是∠ABC的邊BA上一點,以O(shè)為圓心的圓與角的另一邊BC相切于點D,交BO于點E,F(xiàn)是OA上一點,過F作FG⊥AB,交BC于點G,BD=2,sin∠ABC=,設(shè)OF=x,四邊形EDGF的面積為y.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)在直角平面坐標系內(nèi)畫出這個函數(shù)的大致圖象;
(3)這個函數(shù)的圖象與經(jīng)過點(1,)的正比例函數(shù)的圖象有無交點?若有交點,求出交點坐標;若無交點,試說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《圓》(10)(解析版) 題型:解答題

(2002•達州)如圖,O是∠ABC的邊BA上一點,以O(shè)為圓心的圓與角的另一邊BC相切于點D,交BO于點E,F(xiàn)是OA上一點,過F作FG⊥AB,交BC于點G,BD=2,sin∠ABC=,設(shè)OF=x,四邊形EDGF的面積為y.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)在直角平面坐標系內(nèi)畫出這個函數(shù)的大致圖象;
(3)這個函數(shù)的圖象與經(jīng)過點(1,)的正比例函數(shù)的圖象有無交點?若有交點,求出交點坐標;若無交點,試說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《三角形》(06)(解析版) 題型:解答題

(2002•達州)如圖,O是∠ABC的邊BA上一點,以O(shè)為圓心的圓與角的另一邊BC相切于點D,交BO于點E,F(xiàn)是OA上一點,過F作FG⊥AB,交BC于點G,BD=2,sin∠ABC=,設(shè)OF=x,四邊形EDGF的面積為y.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)在直角平面坐標系內(nèi)畫出這個函數(shù)的大致圖象;
(3)這個函數(shù)的圖象與經(jīng)過點(1,)的正比例函數(shù)的圖象有無交點?若有交點,求出交點坐標;若無交點,試說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2002年全國中考數(shù)學試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2002•達州)如圖,O是∠ABC的邊BA上一點,以O(shè)為圓心的圓與角的另一邊BC相切于點D,交BO于點E,F(xiàn)是OA上一點,過F作FG⊥AB,交BC于點G,BD=2,sin∠ABC=,設(shè)OF=x,四邊形EDGF的面積為y.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)在直角平面坐標系內(nèi)畫出這個函數(shù)的大致圖象;
(3)這個函數(shù)的圖象與經(jīng)過點(1,)的正比例函數(shù)的圖象有無交點?若有交點,求出交點坐標;若無交點,試說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2002年四川省達州市中考數(shù)學試卷(解析版) 題型:解答題

(2002•達州)如圖,O是∠ABC的邊BA上一點,以O(shè)為圓心的圓與角的另一邊BC相切于點D,交BO于點E,F(xiàn)是OA上一點,過F作FG⊥AB,交BC于點G,BD=2,sin∠ABC=,設(shè)OF=x,四邊形EDGF的面積為y.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)在直角平面坐標系內(nèi)畫出這個函數(shù)的大致圖象;
(3)這個函數(shù)的圖象與經(jīng)過點(1,)的正比例函數(shù)的圖象有無交點?若有交點,求出交點坐標;若無交點,試說明理由.

查看答案和解析>>

同步練習冊答案