在平面直角坐標(biāo)系xOy中,邊長為5的正方形ABCD的對角線AC、BD相交于點P,頂點A在x軸正半軸上運動,頂點B在y軸正半軸上運動(x軸的正半軸、y軸的正半軸都不包含原點O),頂點C、D都在第一象限.
(1)當(dāng)點坐標(biāo)為A(4,0)時,求點D的坐標(biāo);
(2)求證:OP平分∠AOB;
(3)直接寫出OP長的取值范圍(不要證明).
(1)作DM⊥x軸于點M,
∴∠AMD=90°.
∵∠AOB=90°,
∴∠AMD=∠AOB.
∵四邊形ABCD是正方形,
∴AB=AD,∠BAD=90°,
∴∠OAB+∠DAM=90°.
∵∠OAB+∠OBA=90°,
∴∠DAM=∠OBA.
在△DMA和△AOB中,
∠AMD=∠AOB
∠DAM=∠OBA
AD=AB
,
∴△DMA≌△AOB,
∴AM=OB,DM=AO.
∵A(4,0),
∴OA=4,
∵AB=5,在Rt△AOB中由勾股定理得:
OB=
25-16
=3.
∴AM=3,MD=4,
∴OM=7.
∴D(7,4);
(2)證明:作PE⊥x軸交x軸于E點,作PF⊥y軸交y軸于F點
∵∠BPE+∠EPA=90°,∠EPB+∠FPB=90°,
∴∠FPB=∠EPA,
∵∠PFB=∠PEA,BP=AP,
∴△PBF≌△PAE,
∴PE=PF,
∴點P都在∠AOB的平分線上.
(3)作PE⊥x軸交x軸于E點,作PF⊥y軸交y軸于F點,則PE=h,設(shè)∠APE=α.
在直角△APE中,∠AEP=90°,PA=
5
2
2

∴PE=PA•cosα=
5
2
2
cosa.
∵頂點A在x軸正半軸上運動,頂點B在y軸正半軸上運動(x軸的正半軸、y軸的正半軸都不包含原點O),
∴0°≤α<45°,
2
2
<cosa≤1.
5
2
<PE≤
5
2
2
,.
∵OP=
2
PE,
5
2
2
<OP≤5.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

操作示例:
對于邊長為a的兩個正方形ABCD和EFGH,按圖1所示的方式擺放,在沿虛線BD,EG剪開后,可以按圖中所示的移動方式拼接為圖1中的四邊形BNED.
從拼接的過程容易得到結(jié)論:
①四邊形BNED是正方形;
②S正方形ABCD+S正方形EFGH=S正方形BNED
實踐與探究:
(1)對于邊長分別為a,b(a>b)的兩個正方形ABCD和EFGH,按圖2所示的方式擺放,連接DE,過點D作DM⊥DE,交AB于點M,過點M作MN⊥DM,過點E作EN⊥DE,MN與EN相交于點N;
①證明四邊形MNED是正方形,并用含a,b的代數(shù)式表示正方形MNED的面積;
②在圖2中,將正方形ABCD和正方形EFGH沿虛線剪開后,能夠拼接為正方形MNED,請簡略說明你的拼接方法(類比圖1,用數(shù)字表示對應(yīng)的圖形);
(2)對于n(n是大于2的自然數(shù))個任意的正方形,能否通過若干次拼接,將其拼接成為一個正方形?請簡要說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)正方形ABCD的邊CD的中點為E,F(xiàn)是CE的中點(圖).求證:∠DAE=
1
2
∠BAF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,O為正方形ABCD的對角線AC與BD的交點,M、N兩點分別在BC與AB上,且OM⊥ON.
(1)試說明OM=ON;
(2)試判斷CN與DM的關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在正方形ABCD的內(nèi)側(cè),作等邊三角形ADE,則∠AEB的度數(shù)是( 。
A.60°B.65°C.70°D.75°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四邊形ABCD為正方形,DEAC,AE=AC,AE與CD相交于F.
求證:CE=CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知,如圖1,正方形ABCD和正方形BEFG,三點A、B、E在同一直線上,連接AG和CE,
(1)判定線段AG和線段CE的數(shù)量有什么關(guān)系?請說明理由.
(2)將正方形BEFG,繞點順時針旋轉(zhuǎn)到圖2的位置時,(1)中的結(jié)論是否成立?請說明理由.
(3)若在圖2中連接AE和CG,且AE=2CG=4,求正方形ABCD和正方形BEFG的面積之和為______.(直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四邊形ABCD是正方形,BE⊥BF,BE=BF,EF與BC交于點G.
(1)求證:△ABE≌△CBF;
(2)若∠ABE=50°,求∠EGC的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,點D是AB邊上的中點,已知AC=4,BC=6,
(1)畫出△BCD關(guān)于點D的中心對稱圖形;
(2)根據(jù)圖形說明線段CD長的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案