如圖1,以矩形OABC的兩邊OA和OC所在的直線為x軸、y軸建立平面直角坐標(biāo)系,A點的坐標(biāo)為(3,0),C點的坐標(biāo)為(0,4).將矩形OABC繞O點逆時針旋轉(zhuǎn),使B點落在y軸的正半軸上,旋轉(zhuǎn)后的矩形為OA1B1C1,BC,A1B1相交于點M.
(1)求點B1的坐標(biāo)與線段B1C的長;
(2)將圖1中的矩形OA1B1C1沿y軸向上平移,如圖2,矩形PA2B2C2是平移過程中的某一位置,BC,A2B2相交于點M1,點P運動到C點停止.設(shè)點P運動的距離為x,矩形PA2B2C2與原矩形OABC重疊部分的面積為y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(3)如圖3,當(dāng)點P運動到點C時,平移后的矩形為PA3B3C3.請你思考如何通過圖形變換使矩形PA3B3C3與原矩形OABC重合,請簡述你的做法.

【答案】分析:(1)用勾股定理求矩形OABC的對角線OB長,得點B1的坐標(biāo);B1C=B1O-OC;
(2)求分段函數(shù),以A2落在BC上的時刻為界,將函數(shù)分為兩段,畫出圖形,分別求函數(shù)解析式;
(3)屬于開放性問題,解法多種,主要是圍繞旋轉(zhuǎn),平移軸對稱解題.
解答:解:(1)如圖1,因為OB1=OB==5,
所以點B1的坐標(biāo)為(0,5).
因為C(0,4),所以O(shè)C=4,
則B1C=OB1-OC=5-4=1.

(2)在矩形OA1B1C1沿y軸向上平移到P點與C點重合的過程中,點A1運動到矩形OABC的邊BC上時,
重疊部分的面積為三角形PA2C的面積,A2C==,又A2P=3,
根據(jù)勾股定理得:CP=,即4-x=
求得P點移動的距離
當(dāng)自變量x的取值范圍為0≤x<時,
如圖2,由△B2CM1∽△B2A2P,
得CM1=,此時,y=S△B2A2P-S△B2CM1=×3×4-×(1+x),
即y=-(x+1)2+6(或y=-x2-x+).
當(dāng)自變量x的取值范圍為≤x≤4時,
求得y=S△PCM1′=(x-4)2(或y=x2-x+).

(3)答案:
①把矩形PA3B3C3沿∠BPA3的角平分線所在直線對折.
②把矩形PA3B3C3繞C點順時針旋轉(zhuǎn),使點A3與點B重合,再沿y軸向下平移4個單位長度.
③把矩形PA3B3C3繞C點順時針旋轉(zhuǎn),使點A3與點B重合,再沿BC所在的直線對折.
④把矩形PA3B3C3沿y軸向下平移4個單位長度,再繞O點順時針旋轉(zhuǎn),使點A3與點A重合.
提示:本問只要求整體圖形的重合,不必要求圖形原對應(yīng)點的重合.
點評:本題主要考查圖形的旋轉(zhuǎn)、平移、折疊變換知識,是一道動態(tài)問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知OA⊥OB,OA=4,OB=3,以AB為邊作矩形ABCD,使AD=a,過點D作DE垂直O(jiān)A的延精英家教網(wǎng)長線交于點E.
(1)證明:△OAB∽△EDA;
(2)當(dāng)a為何值時,△OAB與△EDA全等?請說明理由,并求出此時點C到OE的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系中,點A在x軸上,點B在第一象限,∠OBA=90°,AB=4,OB=3,點M是線段OB上的動點,(不與O,B重合),過點M作MN∥OA交AB于點N,以BM,BN為一組鄰邊作矩形BMDN,設(shè)BM=t.
(1)求點B的坐標(biāo);
(2)在圖(2)中,當(dāng)t為何值時,點D落在x軸上,并求此時直線BD的表達(dá)式;
(3)動點M在運動過程中,記△MND與△OAB重疊部分的面積為S,試求S關(guān)于t的函數(shù)表達(dá)式,并寫出t的取值范圍.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,四邊形AOBC是矩形,以O(shè)為坐標(biāo)原點,OB、OA分別在x軸、y軸上,點A的坐標(biāo)為(0,3),∠OAB=60°,以AB為軸對折后,C點落在D點處,則D點的坐標(biāo)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•海門市一模)如圖,直線l的解析式為y=-
43
x+4,它與x軸、y軸分別相交于A、B兩點,平行于直線l的直線m從原點O出發(fā),沿x軸的正方向以每秒1個單位長度的速度運動,它與x軸、y軸分別相交于M、N兩點,運動時間為t秒(0<t≤3)
(1)求A、B兩點的坐標(biāo);
(2)以MN為對角線作矩形OMPN,記△MPN和△OAB重合部分的面積為S,試探究S與t之間的函數(shù)關(guān)系;
(3)當(dāng)S=2時,是否存在點R,使△RNM∽△AOB?若存在,求出R的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,四邊形是矩形,以O為坐標(biāo)原點,OB、OA分別在x軸、y軸上,點A的坐標(biāo)為(0,3),∠OAB=60°,以AB為軸對折后,C點落在D點處,則D點的坐標(biāo)為                               (  )

A.     B.      C.      D.

查看答案和解析>>

同步練習(xí)冊答案