當(dāng)x=______時(shí),分式與分式的值相等.

答案:略
解析:

根據(jù)題意得,解這個(gè)分式方程,得,經(jīng)驗(yàn)證是原分式方程的解,


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖:已知,四邊形ABCD中,AD∥BC,DC⊥BC,已知AB=5,BC=6,cosB=
35
,點(diǎn)O為BC邊上的一個(gè)動(dòng)點(diǎn),連接OD,以O(shè)為圓心,BO為半徑的⊙O分別交邊AB于點(diǎn)P,交線段OD于點(diǎn)M,交射線BC于點(diǎn)N,連接MN.
(1)當(dāng)BO=AD時(shí),求BP的長(zhǎng);
(2)點(diǎn)O運(yùn)動(dòng)的過(guò)程中,是否存在BP=MN的情況?若存在,請(qǐng)求出當(dāng)BO為多長(zhǎng)時(shí)BP=MN;若不存在,請(qǐng)說(shuō)明由;
(3)在點(diǎn)O運(yùn)動(dòng)的過(guò)程中,以點(diǎn)C為圓心,CN為半徑作⊙C,請(qǐng)直接寫(xiě)出當(dāng)⊙C存在時(shí),⊙O與⊙C的位置關(guān)系,以及相應(yīng)的⊙C半徑CN的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,∠CAB=90°,AB=AC=1,D是AB上的一點(diǎn),且DE⊥BC,垂足為E,直角邊ED交直角邊CA的延長(zhǎng)線于點(diǎn)F,則當(dāng)AD=
 
時(shí),△ADF與△BDE的面積之和最小,最小值為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,線段AC與BD交于O,DO=DC,AO=AB,E,F(xiàn),G分別是OB,OC,AD中點(diǎn)
(1)如圖1,當(dāng)∠AOB=60°時(shí),EG與FG的數(shù)量關(guān)系是
 
,∠EGF=
 
;
如圖2,當(dāng)∠AOB=45°時(shí),EG與FG的數(shù)量關(guān)系是
 
,∠EGF=
 

(2)如圖3,當(dāng)∠AOB=θ時(shí),EG與FG的數(shù)量關(guān)系是
 
,∠EGF=
 
;
(3)請(qǐng)你從上述三個(gè)結(jié)論中選擇一個(gè)結(jié)論加以證明
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若A=
1
x+1
,B=
2
x2-1
,當(dāng)x=
 
時(shí),A與B的值相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(10分)如圖,已知直角梯形ABCD中,AD//BC, DC⊥BC,AB=5,BC=6,∠B=53°.點(diǎn)O為BC邊上的一個(gè)點(diǎn),連結(jié)OD,以O(shè)為圓心,BO為半徑的⊙O分別交邊AB于點(diǎn)P,交線段OD于點(diǎn)M,交射線BC于點(diǎn)N,連結(jié)MN.

(1)當(dāng)BO=AD時(shí),求BP的長(zhǎng);
(2)在點(diǎn)O運(yùn)動(dòng)的過(guò)程中,線段 BP與MN能否相等?若能,請(qǐng)求出當(dāng)BO為多長(zhǎng)時(shí)BP=MN;若不能,請(qǐng)說(shuō)明理由;
(3)在點(diǎn)O運(yùn)動(dòng)的過(guò)程中,以點(diǎn)C為圓心,CN為半徑作⊙C,請(qǐng)直接寫(xiě)出當(dāng)⊙C存在時(shí),⊙O與⊙C的位置關(guān)系,以及相應(yīng)的⊙C半徑CN的取值范圍.
(參考數(shù)據(jù):cos53°≈0.6;sin53°≈0.8;tan74°3.5)

查看答案和解析>>

同步練習(xí)冊(cè)答案