如圖,四邊形ABCD中,AE、AF分別是BC,CD的中垂線,∠EAF=80°,∠CBD=30°,則∠ABC=________,∠ADC=________.

40°    60°
分析:連接AC,由線段垂直平分線的性質(zhì)可得出AB=AC=AD,即B、C、D在以A為圓心,AB為半徑的圓上,再由圓周角定理即可求解.
解答:連接AC,

∵AE、AF分別是BC、CD的中垂線,
∴AB=AC=AD,
∴B、C、D在以A為圓心,AB為半徑的圓上,
∵∠CBD=30°,
∴∠DAC=2∠DBC=60°,
∵AF⊥CD,CF=DF,
∴∠DAF=30°,
∴∠ADC=60°,
又∵∠EAC=80°-30°=50°,
∴∠ABC=∠ACE=90°-50°=40°.
故答案為:40°,60°.
點評:本題考查的是線段垂直平分線的性質(zhì)及圓周角定理,根據(jù)題意作出輔助線是解答此題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對角線AC與BD互相垂直平分于點O,設(shè)AC=2a,BD=2b,請推導(dǎo)這個四邊形的性質(zhì).(至少3條)
(提示:平面圖形的性質(zhì)通常從它的邊、內(nèi)角、對角線、周長、面積等入手.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD的對角線AC、BD交于點P,過點P作直線交AD于點E,交BC于點F.若PE=PF,且AP+AE=CP+CF.
(1)求證:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四邊形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD為正方形,E是BC的延長線上的一點,且AC=CE,求∠DAE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD是正方形,點E是BC的中點,∠AEF=90°,EF交正方形外角的平分線CF于F.

(I)求證:AE=EF;
(Ⅱ)若將條件中的“點E是BC的中點”改為“E是BC上任意一點”,其余條件不變,則結(jié)論AE=EF還成立嗎?若成立,請證明;若不成立,請說明理由.

查看答案和解析>>

同步練習冊答案