【題目】一艘輪船在小島A的北偏東60°方向距小島80海里的B處,沿正西方向航行3小時后到達小島的北偏西45°的C處,則該船行駛的速度為海里/小時.

【答案】
【解析】解:如圖所示:
設(shè)該船行駛的速度為x海里/時,
3小時后到達小島的北偏西45°的C處,
由題意得:AB=80海里,BC=3x海里,
在直角三角形ABQ中,∠BAQ=60°,
∴∠B=90°﹣60°=30°,
∴AQ= AB=40,BQ= AQ=40 ,
在直角三角形AQC中,∠CAQ=45°,
∴CQ=AQ=40,
∴BC=40+40 =3x,解得:x= .即該船行駛的速度為 海里/時;故答案為:

設(shè)該船行駛的速度為x海里/時,由已知可得BC=3x,AQ⊥BC,∠BAQ=60°,∠CAQ=45°,AB=80海里,在直角三角形ABQ中求出AQ、BQ,再在直角三角形AQC中求出CQ,得出BC=40+40 =3x,解方程即可.本題考查了解直角三角形的應(yīng)用中的方向角問題、等腰直角三角形的性質(zhì)、含30°角的直角三角形的性質(zhì)等知識;通過解直角三角形得出方程是解決問題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線與x軸交于A(6,0)、B(﹣ ,0)兩點,與y軸交于點C,過拋物線上點M(1,3)作MN⊥x軸于點N,連接OM.
(1)求此拋物線的解析式;
(2)如圖1,將△OMN沿x軸向右平移t個單位(0≤t≤5)到△O′M′N′的位置,MN′、M′O′與直線AC分別交于點E、F.
①當點F為M′O′的中點時,求t的值;
②如圖2,若直線M′N′與拋物線相交于點G,過點G作GH∥M′O′交AC于點H,試確定線段EH是否存在最大值?若存在,求出它的最大值及此時t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以x為自變量的二次函數(shù)y=x2﹣2(b﹣2)x+b2﹣1的圖象不經(jīng)過第三象限,則實數(shù)b的取值范圍是( 。
A.b≥
B.b≥1或b≤﹣1
C.b≥2
D.1≤b≤2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在Rt△ACB中,∠BAC=90°,AB=AC,分別過B、C兩點作過點A的直線l的垂線,垂足為DE;

1)如圖1,當D、E兩點在直線BC的同側(cè)時,猜想,BDCE、DE三條線段有怎樣的數(shù)量關(guān)系?并說明理由.

2)如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點都在直線m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意銳角或鈍角.請問結(jié)論DE=BD+CE是否成立?如成立,請你給出證明;若不成立,請說明理由.

3)如圖3,∠BAC=90°,AB=25,AC=35.點PB點出發(fā)沿B→A→C路徑向終點C運動;點QC點出發(fā)沿C→A→B路徑向終點B運動.點PQ分別以每秒23個單位的速度同時開始運動,只要有一點到達相應(yīng)的終點時兩點同時停止運動;在運動過程中,分別過PQPF⊥lF,QG⊥lG.問:點P運動多少秒時,△PFA△QAG全等?(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,從①∠1=∠2 ②∠C=∠D ③∠A=∠F 三個條件中選出兩個作為已知條件,另一個作為結(jié)論所組成的命題中,正確命題的個數(shù)為( 。

A.0
B.1
C.2
D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,長方形ABCD的紙片,長AD=10厘米,寬AB=8厘米,AD沿點A對折,點D正好落在BC上的點F處,AE是折痕。

(1)圖中有全等的三角形嗎?如果有,請直接寫出來;

(2)求線段BF的長;

(3)求線段EF的長;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解某學(xué)校初四年紀學(xué)生每周平均課外閱讀時間的情況,隨機抽查了該學(xué)校初四年級m名同學(xué),對其每周平均課外閱讀時間進行統(tǒng)計,繪制了如下條形統(tǒng)計圖(圖一)和扇形統(tǒng)計圖(圖二):

(1)根據(jù)以上信息回答下列問題:
①求m值.
②求扇形統(tǒng)計圖中閱讀時間為5小時的扇形圓心角的度數(shù).
③補全條形統(tǒng)計圖.
(2)直接寫出這組數(shù)據(jù)的眾數(shù)、中位數(shù),求出這組數(shù)據(jù)的平均數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AD∥BC,AB⊥BC,AB=3,點E為射線BC上一個動點,連接AE,將△ABE沿AE折疊,點B落在點B′處,過點B′作AD的垂線,分別交AD,BC于點M,N.當點B′為線段MN的三等分點時,BE的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知CD=6m,AD=8m,ADC=90°,BC=24m,AB=26m.圖中陰影部分的面積=_____m2

查看答案和解析>>

同步練習(xí)冊答案