精英家教網 > 初中數學 > 題目詳情
如圖,菱形ABCD中,BE⊥AD,BF⊥CD,E、F為垂足,AE=ED,則∠EBF=
60°
60°
分析:首先連接BD,根據菱形的四條邊都相等,可得AB=BC=CD=AD;又由BE⊥AD,AE=ED,可得AB=AD=BD,所以∠A=60°,可得∠ADC=120°,即可得∠EBF的度數.
解答:解:
連接BD,
∵BE⊥AD,AE=ED,
∴AB=BD,
∵四邊形ABCD是菱形,
∴AB=BC=CD=AD,AD∥BC,AB∥CD,
∴AB=AD=BD,
∴∠A=60°,
∴∠ADC=120°,
∵BE⊥AD,BF⊥CD,
∴∠AED=∠AFD=90°,
∴∠EBF=60°.
點評:此題考查了菱形的性質:菱形的四條邊都相等.還考查了線段垂直平分線的性質.此題比較簡單,解題要細心.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

26、已知:如圖,菱形ABCD中,E,F分別是CB,CD上的點,且BE=DF.
(1)求證:AE=AF;
(2)若∠B=60°,點E,F分別為BC和CD的中點,求證:△AEF為等邊三角形.

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,菱形ABCD中,∠A=60°,AB=2,動點P從點B出發(fā),以每秒1個單位長度的速度沿B→C→D向終點D運動.同時動點Q從點A出發(fā),以相同的速度沿A→D→B向終點B運動,運動的時間為x秒,當點P到達點D時,點P、Q同時停止運動,設△APQ的面積為y,則反映y與x的函數關系的圖象是( 。
A、精英家教網B、精英家教網C、精英家教網D、精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,菱形ABCD中,∠BAD=60°,M是AB的中點,P是對角線AC上的一個動點,若AB長為2
3
,則PM+PB的最小值是
3
3

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖:菱形ABCD中,E是AB的中點,且CE⊥AB,AB=6cm.
求:(1)∠BCD的度數;
(2)對角線BD的長;
(3)菱形ABCD的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,菱形ABCD中,∠ADC=120°,AB=10,
(1)求BD的長.
(2)求菱形的面積.

查看答案和解析>>

同步練習冊答案