拋物線y=ax2+c(a≠0)與直線y=kx+b(k≠0)相交于A(2,1)、B(1,-1)兩點(diǎn),你能求出拋物線和直線的函數(shù)表達(dá)式嗎?畫出草圖.
將A與B代入拋物線解析式得:
4a+c=1
a+c=-1
,
解得:
a=
2
3
c=-
5
3
,
∴拋物線解析式為y=
2
3
x2-
5
3
;
將A與B代入直線解析式得:
2k+b=1
k+b=-1
,
解得:
k=2
b=-3

則直線解析式為y=2x-3.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

音樂噴泉的某一個噴水口,噴出的一束水流形狀是拋物線,在這束水流所在平面建立平面直角坐標(biāo)系,以水面與此面的相交線為x軸,以噴水管所在的鉛垂線為y軸,噴出的水流拋物線的解析式為:y=-x2+bx+2.但控制進(jìn)水速度,可改變噴出的水流達(dá)到的最大高度,及落在水面的落點(diǎn)距噴水管的水平距離.
(1)噴出的水流拋物線與拋物線y=ax2的形狀相同,則a=______;
(2)落在水面的落點(diǎn)距噴水管的水平距離為2個單位長時,求水流拋物線的解析式;
(3)求出(2)中的拋物線的頂點(diǎn)坐標(biāo)和對稱軸;
(4)對于水流拋物線y=-x2+bx+2.當(dāng)b=b1時,落在水面的落點(diǎn)坐標(biāo)為M(m,0),當(dāng)b=b2時,落在水面的落點(diǎn)坐標(biāo)為N(n,0),點(diǎn)M與點(diǎn)N都在x軸的正半軸,且點(diǎn)M在點(diǎn)N的右邊,試比較b1與b2的大小.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知二次函數(shù)y=a(x+1)2+m的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于C,頂點(diǎn)為M,直線MC的解析式為y=kx-3,且直線MC與x軸交于點(diǎn)N,sin∠BCO=
10
10

(1)求直線MC及二次函數(shù)的解析式;
(2)在二次函數(shù)的圖象上是否存在點(diǎn)P(異于點(diǎn)C),使以點(diǎn)P、N、C為頂點(diǎn)的三角形是以NC為一條直角邊的直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線y=ax2+bx+c與x軸交于A(1,0),B(3,0)兩點(diǎn),且過點(diǎn)(-1,16),拋物線的頂點(diǎn)是點(diǎn)C,對稱軸與x軸的交點(diǎn)為點(diǎn)D,原點(diǎn)為點(diǎn)O.在y軸的正半軸上有一動點(diǎn)N,使以A、O、N這三點(diǎn)為頂點(diǎn)的三角形與以C、A、D這三點(diǎn)為頂點(diǎn)的三角形相似.求:
(1)這條拋物線的解析式;
(2)點(diǎn)N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy內(nèi),拋物線y=-x2+bx+c與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C.把直線y=-x-3沿y軸翻折后恰好經(jīng)過B、C兩點(diǎn).
(1)求拋物線的解析式;
(2)設(shè)拋物線的頂點(diǎn)為D,在坐標(biāo)軸上是否存在這樣的點(diǎn)F,使得∠DFB=∠DCB?若存在,求出點(diǎn)F的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知二次函數(shù)y=-x2+bx+c(c>0)的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,且OB=OC=3,頂點(diǎn)為M.
(1)求二次函數(shù)的解析式;
(2)點(diǎn)P為線段BM上的一個動點(diǎn),過點(diǎn)P作x軸的垂線PQ,垂足為Q,若OQ=m,四邊形ACPQ的面積為S,求S關(guān)于m的函數(shù)解析式,并寫出m的取值范圍;
(3)探索:線段BM上是否存在點(diǎn)N,使△NMC為等腰三角形?如果存在,求出點(diǎn)N的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某種商品在30天內(nèi)每件銷售價(jià)格P(元)與時間t(天)的函數(shù)關(guān)系用如圖所示的兩條線段表示,該商品在30天內(nèi)日銷售量Q(件)與時間t(天)之間的函數(shù)關(guān)系是Q=-t+40(0<t≤30,t是整數(shù)).
(1)求該商品每件的銷售價(jià)格P與時間t的函數(shù)關(guān)系式,并寫出自變量t的取值范圍;
(2)求該商品的日銷售金額的最大值,并指出日銷售金額最大的一天是30天中的第幾天?(日銷售金額=每件的銷售價(jià)格×日銷售量)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知如圖,拋物線t=ax2+bx+c與x軸相交于B(1,0)、C(4,0)兩點(diǎn),與y軸的正半軸相交于A點(diǎn),過A、B、C三點(diǎn)的⊙P與y軸相切于點(diǎn)A,M為y軸負(fù)半軸上的一個動點(diǎn),直線MB交拋物線于N,交⊙P于D.
(1)填空:A點(diǎn)坐標(biāo)是______,⊙P半徑的長是______,a=______,b=______,c=______;
(2)若S△BNC:S△AOB=15:2,求N點(diǎn)的坐標(biāo);
(3)若△AOB與以A、B、D為頂點(diǎn)的三角形相似,求MB•MD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在△ABC中,∠ACB=90°,點(diǎn)A的坐標(biāo)為(0,2),點(diǎn)B(-3,1)在拋物線y=ax2+ax-2上,點(diǎn)C在x軸上.
(1)求a的值;
(2)求點(diǎn)C的坐標(biāo);
(3)若△ABC是等腰直角三角形
①如圖1,將△ABC繞頂點(diǎn)A逆時針方向旋轉(zhuǎn)β°(0<β<180°)得到△AB′C′,當(dāng)點(diǎn)C′(2,1)恰好落在該拋物線上,請你通過計(jì)算說明點(diǎn)B′也在該拋物線上.
②如圖2,設(shè)拋物線與y軸的交點(diǎn)為D、P、Q兩點(diǎn)同時從D點(diǎn)出發(fā),點(diǎn)P沿折線D→C→B運(yùn)動到點(diǎn)B,點(diǎn)Q沿拋物線(在第二、三象限的部分)運(yùn)動到點(diǎn)B,若P、Q兩點(diǎn)的運(yùn)動速度相同,請問誰先到達(dá)點(diǎn)B,為什么?

查看答案和解析>>

同步練習(xí)冊答案