如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與x軸交于A、B兩點(diǎn),B點(diǎn)的坐標(biāo)為(3,0),與y軸交于點(diǎn)C(0,-3),點(diǎn)P是直線BC下方拋物線上的一個(gè)動(dòng)點(diǎn).

(1)求二次函數(shù)解析式;
(2)連接PO,PC,并將△POC沿y軸對(duì)折,得到四邊形.是否存在點(diǎn)P,使四邊形為菱形?若存在,求出此時(shí)點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),四邊形ABPC的面積最大?求出此時(shí)P點(diǎn)的坐標(biāo)和四邊形ABPC的最大面積.

解:(1)將B、C兩點(diǎn)的坐標(biāo)代入,得
, 解得。
∴二次函數(shù)的解析式為。
(2)存在。如圖1,假設(shè)拋物線上存在點(diǎn)P,使四邊形為菱形,連接交CO于點(diǎn)E。

∵四邊形為菱形, K∴PC=PO,且PE⊥CO。
∴OE=EC=,即P點(diǎn)的縱坐標(biāo)為。
解得:
(不合題意,舍去)。
∴存在這樣的點(diǎn),此時(shí)P點(diǎn)的坐標(biāo)為()。
(3)如圖2,連接PO,作PM⊥x于M,PN⊥y于N。設(shè)P點(diǎn)坐標(biāo)為(x,),

=0,得點(diǎn)A坐標(biāo)為(-1,0)。
∴AO=1,OC=3, OB=3,PM=,PN=x。
∴S四邊形ABPC=++
=AO·OC+OB·PM+OC·PN
=×1×3+×3×()+×3×x
==
∴當(dāng)x=時(shí),四邊形ABPC的面積最大.此時(shí)P點(diǎn)坐標(biāo)為(),四邊形ABPC的最大面積為。

解析試題分析:(1)直接把B(3,0)、C(0,-3)代入可得到關(guān)于b、c的方程組,解方程組求得b,c,則從而求得二次函數(shù)的解析式。
(2)假設(shè)拋物線上存在點(diǎn)P,使四邊形為菱形,連接交CO于點(diǎn)E,則PO=PC,根據(jù)翻折的性質(zhì)得OP′=OP,CP′=CP,易得四邊形POP′C為菱形,又E點(diǎn)坐標(biāo)為(0, ),則點(diǎn)P的縱坐標(biāo)為,把y= 
代入可求出對(duì)應(yīng)x的值,然后確定滿足條件的P點(diǎn)坐標(biāo)。
(3)由S四邊形ABPC=++求出S四邊形ABPC關(guān)于P點(diǎn)橫坐標(biāo)的函數(shù)表達(dá)式,應(yīng)用二次函數(shù)的最值原理求解。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

永嘉縣綠色和特色農(nóng)產(chǎn)品在國際市場上頗具競爭力,其中香菇遠(yuǎn)銷日本和韓國等地.上市時(shí),外商李經(jīng)理按市場價(jià)格10元/千克在我縣收購了2000千克香菇存放入冷庫中.據(jù)預(yù)測,香菇的市場價(jià)格每天每千克將上漲0.5元,但冷庫存放這批香菇時(shí)每天需要支出各種費(fèi)用合計(jì)340元,而且香菇在冷庫中最多保存110天,同時(shí),平均每天有6千克的香菇損壞不能出售.
(1)若存放天后,將這批香菇一次性出售,設(shè)這批香菇的銷售總金額為元,試寫出之間的函數(shù)關(guān)系式.
(2)李經(jīng)理想獲得利潤22500元,需將這批香菇存放多少天后出售?(利潤=銷售總金額-收購成本-各種費(fèi)用)
(3)李經(jīng)理將這批香菇存放多少天后出售可獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線的頂點(diǎn)為Q,與軸交于A(-1,0)、B(5, 0)兩點(diǎn),與軸交于C點(diǎn).
 
(1)直接寫出拋物線的解析式及其頂點(diǎn)Q的坐標(biāo);
(2)在該拋物線的對(duì)稱軸上求一點(diǎn),使得△的周長最小.請(qǐng)?jiān)趫D中畫出點(diǎn)的位置,并求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線經(jīng)過點(diǎn)A(6,0)、B(0,-4).

(1)求該拋物線的解析式;
(2)若拋物線對(duì)稱軸與x軸交于點(diǎn)C,連接BC,點(diǎn)P在拋物線對(duì)稱軸上,使△PBC為等腰三角形,請(qǐng)寫出符合條件的所有點(diǎn)P坐標(biāo).(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,要設(shè)計(jì)一個(gè)矩形的花壇,花壇長60 m,寬40 m,有兩條縱向甬道和一條橫向甬道,橫向甬道的兩側(cè)有兩個(gè)半圓環(huán)形甬道,半圓環(huán)形甬道的內(nèi)半圓的半徑為10 m,橫向甬道的寬度是其它各甬道寬度的2倍.設(shè)橫向甬道的寬為2x m.(π的值取3)

(1)用含x的式子表示兩個(gè)半圓環(huán)形甬道的面積之和;
(2)當(dāng)所有甬道的面積之和比矩形面積的多36 m2時(shí),求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,矩形OABC在平面直角坐標(biāo)系xOy中,點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA=4,OC=3,若拋物線的頂點(diǎn)在BC邊上,且拋物線經(jīng)過O,A兩點(diǎn),直線AC交拋物線于點(diǎn)D.

(1)求拋物線的解析式;
(2)求點(diǎn)D的坐標(biāo);
(3)若點(diǎn)M在拋物線上,點(diǎn)N在x軸上,是否存在以A,D,M,N為頂點(diǎn)的四邊形是平行四邊形?若存在,求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,拋物線的頂點(diǎn)為A,與y軸的交點(diǎn)為B,連結(jié)AB,AC⊥AB,交y軸于點(diǎn)C,延長CA到點(diǎn)D,使AD=AC,連結(jié)BD.作AE∥x軸,DE∥y軸.

(1)當(dāng)m=2時(shí),求點(diǎn)B的坐標(biāo);
(2)求DE的長?
(3)①設(shè)點(diǎn)D的坐標(biāo)為(x,y),求y關(guān)于x的函數(shù)關(guān)系式?②過點(diǎn)D作AB的平行線,與第(3)①題確定的函數(shù)圖象的另一個(gè)交點(diǎn)為P,當(dāng)m為何值時(shí),以,A,B,D,P為頂點(diǎn)的四邊形是平行四邊形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

為了落實(shí)國務(wù)院的指示精神,某地方政府出臺(tái)了一系列“三農(nóng)”優(yōu)惠政策,使農(nóng)民收入大幅度增加.某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)產(chǎn)品,已知這種產(chǎn)品的成本價(jià)為每千克20元,市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價(jià)x(元/千克)有如下關(guān)系:y=﹣2x+80.設(shè)這種產(chǎn)品每天的銷售利潤為w元.
(1)求w與x之間的函數(shù)關(guān)系式.
(2)該產(chǎn)品銷售價(jià)定為每千克多少元時(shí),每天的銷售利潤最大?最大利潤是多少元?
(3)如果物價(jià)部門規(guī)定這種產(chǎn)品的銷售價(jià)不高于每千克28元,該農(nóng)戶想要每天獲得150元的銷售利潤,銷售價(jià)應(yīng)定為每千克多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知拋物線經(jīng)過A(1,0),B(0,3)兩點(diǎn),對(duì)稱軸是x=﹣1.

(1)求拋物線對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),以每秒1個(gè)單位長度的速度在線段OA上運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)M從M從O點(diǎn)出發(fā)以每秒3個(gè)單位長度的速度在線段OB上運(yùn)動(dòng),過點(diǎn)Q作x軸的垂線交線段AB于點(diǎn)N,交拋物線于點(diǎn)P,設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
①當(dāng)t為何值時(shí),四邊形OMPQ為矩形;
②△AON能否為等腰三角形?若能,求出t的值;若不能,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案