如圖(1),拋物線(xiàn)y=ax2-3ax+b經(jīng)過(guò)A(-1,0),C(3,-4)兩點(diǎn),與y軸交于點(diǎn)D,與x軸交于另一點(diǎn)B.
(1)求此拋物線(xiàn)的解析式;
(2)若直線(xiàn)L:y=kx+1(k≠0)將四邊形ABCD的面積分成相等的兩部分,求直線(xiàn)L的解析式;
(3)如圖(2),過(guò)點(diǎn)E(1,1)作EF⊥x軸于點(diǎn)F,將△AEF繞平面內(nèi)某點(diǎn)旋轉(zhuǎn)180°后得△MNT(點(diǎn)M、N、T分別與點(diǎn)A,E,F(xiàn)對(duì)應(yīng)),使點(diǎn)M,N在拋物線(xiàn)上,求點(diǎn)M,N的坐標(biāo).
分析:首先把已知坐標(biāo)代入解析式求出拋物線(xiàn)解析式.然后作輔助線(xiàn)過(guò)點(diǎn)C作CH⊥AB于點(diǎn)H,得出四邊形ABCD是等腰梯形,由矩形的中心對(duì)稱(chēng)性得出過(guò)P點(diǎn)且與CD相交的任一直線(xiàn)將梯形ABCD的面積平分.設(shè)M(m,n),N(m+2,n+1)利用等式關(guān)系求出m,n的值后即可.
解答:解:(1)∵拋物線(xiàn)y=ax2-3ax+b過(guò)A(-1,0)、C(3,-4),
∴0=a+3a+b,-4=9a-9a+b.
解得a=1,b=-4,
∴拋物線(xiàn)解析式y(tǒng)=x2-3x-4.

(2)如圖1,過(guò)點(diǎn)C作CH⊥AB于點(diǎn)H,
由y=x2-3x-4得B(4,0)、D(0,-4).
又∵A(-1,0),C(3,-4),
∴CD∥AB.
由拋物線(xiàn)的對(duì)稱(chēng)性得四邊形ABCD是等腰梯形,
∴S△AOD=S△BHC
設(shè)矩形ODCH的對(duì)稱(chēng)中心為P,則P(
3
2
,-2).
由矩形的中心對(duì)稱(chēng)性知:過(guò)P點(diǎn)任一直線(xiàn)將它的面積平分.
∴過(guò)P點(diǎn)且與CD相交的任一直線(xiàn)將梯形ABCD的面積平分.
當(dāng)直線(xiàn)y=kx+1經(jīng)過(guò)點(diǎn)P時(shí),
得-2=
3
2
k+1
∴k=-2.
∴當(dāng)k=-2時(shí),直線(xiàn)y=-2x+1將四邊形ABCD面積二等分.

(3)如圖2,由題意知,四邊形AEMN為平行四邊形,
∴AN∥EM且AN=EM.
∵E(1,1)、A(-1,0),
∴設(shè)M(m,n),則N(m-2,n-1)
∵M(jìn)、N在拋物線(xiàn)上,
∴n=m2-3m-4,n-1=(m-2)2-3(m-2)-4,
解得m=
11
4
,n=-
75
16

∴M(
11
4
,-
75
16
),N(
3
4
,-
91
16

點(diǎn)評(píng):本題的綜合性強(qiáng),是不可多得的一道答題.重點(diǎn)考查了二次函數(shù)的有關(guān)知識(shí)以及平行四邊形,梯形的性質(zhì),難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,拋物線(xiàn)y=x2的頂點(diǎn)為P,A、B是拋物線(xiàn)上兩點(diǎn),AB∥x軸,四邊形ABCD為矩形,CD邊經(jīng)過(guò)點(diǎn)P,AB=2AD.
(1)求矩形ABCD的面積;
(2)如圖2,若將拋物線(xiàn)“y=x2”,改為拋物線(xiàn)“y=x2+bx+c”,其他條件不變,請(qǐng)猜想矩形ABCD的面積;
(3)若將拋物線(xiàn)“y=x2+bx+c”改為拋物線(xiàn)“y=ax2+bx+c”,其他條件不變,請(qǐng)猜想矩形ABCD的面積.(用a、b、c表示,并直接寫(xiě)出答案)
附加題:若將題中“y=x2”改為“y=ax2+bx+c”,“AB=2AD”條件不要,其他條件不變,探索矩形ABCD面精英家教網(wǎng)積為常數(shù)時(shí),矩形ABCD需要滿(mǎn)足什么條件并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知一拋物線(xiàn)過(guò)坐標(biāo)原點(diǎn)O和點(diǎn)A(1,h)、B(4,0),C為拋物線(xiàn)對(duì)稱(chēng)軸上一點(diǎn)精英家教網(wǎng),且OA⊥AB,∠COB=45°.
(1)求h的值;
(2)求此拋物線(xiàn)的解析式;
(3)若P為線(xiàn)段OB上一個(gè)動(dòng)點(diǎn)(與端點(diǎn)不重合),過(guò)點(diǎn)P作PM⊥AB于M,PN⊥OC于N,試求
PM
OA
+
PN
BC
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

25、目前國(guó)內(nèi)最大跨徑的鋼管混凝土拱橋--永和大橋,是南寧市又一標(biāo)志性建筑,其拱形圖形為拋物線(xiàn)的一部分(如圖1),在正常情況下,位于水面上的橋拱跨度為350米,拱高為85米.
(1)在所給的直角坐標(biāo)系中(如圖2),假設(shè)拋物線(xiàn)的表達(dá)式為y=ax2+b,請(qǐng)你根據(jù)上述數(shù)據(jù)求出a,b的值,并寫(xiě)出拋物線(xiàn)的表達(dá)式;(不要求寫(xiě)自變量的取值范圍,a,b的值保留兩個(gè)有效數(shù)字)
(2)七月份汛期將要來(lái)臨,當(dāng)邕江水位上漲后,位于水面上的橋拱跨度將會(huì)減小,當(dāng)水位上漲4m時(shí),位于水面上的橋拱跨度有多大?(結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,已知拋物線(xiàn)的頂點(diǎn)為A(0,1),矩形CDEF的頂點(diǎn)C、F在拋物線(xiàn)上,點(diǎn)D、E在x軸上,CF交y軸于點(diǎn)B(0,2),且其面積為8:
(1)此拋物線(xiàn)的解析式;
(2)如圖2,若點(diǎn)P為所求拋物線(xiàn)上的一動(dòng)點(diǎn),試判斷以點(diǎn)P為圓心,PB為半徑的圓與x軸的位置關(guān)系,并說(shuō)明理由.
(3)如圖2,設(shè)點(diǎn)P在拋物線(xiàn)上且與點(diǎn)A不重合,直線(xiàn)PB與拋物線(xiàn)的另一個(gè)交點(diǎn)為Q,過(guò)點(diǎn)P、Q分別作x軸的垂線(xiàn),垂足分別為N、M,連接PO、QO.求證:△QMO∽△PNO.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知知拋物線(xiàn)y=x2+bx+c與x軸交于點(diǎn)A(1,0)和點(diǎn)B,與y軸交于點(diǎn)C(0,-3).
(1)求拋物線(xiàn)的解析式;
(2)如圖(1),己知點(diǎn)H(0,-1).問(wèn)在拋物線(xiàn)上是否存在點(diǎn)G (點(diǎn)G在y軸的左側(cè)),使得S△GHC=S△GHA?若存在,求出點(diǎn)G的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)如圖(2),拋物線(xiàn)上點(diǎn)D在x軸上的正投影為點(diǎn)E(-2,0),F(xiàn)是OC的中點(diǎn),連接DF,P為線(xiàn)段BD上的一點(diǎn),若∠EPF=∠BDF,求線(xiàn)段PE的長(zhǎng).
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案