【題目】如圖1,直線DE上有一點O,過點O在直線DE上方作射線OC,∠COE=140°,將一直角三角板AOB的直角頂點放在點O處,一條直角邊OA在射線OD上,另一邊OB在直線DE上方,將直角三角板繞著點O按每秒10°的速度逆時針旋轉(zhuǎn)一周,設旋轉(zhuǎn)時間為t秒.
(1)當直角三角板旋轉(zhuǎn)到如圖2的位置時,OA恰好平分∠COD,求此時∠BOC的度數(shù);
(2)若射線OC的位置保持不變,在旋轉(zhuǎn)過程中,是否存在某個時刻,使得射線OA、OC、OD中的某一條射線是另兩條射線所成夾角的角平分線?若存在,請求出t的取值,若不存在,請說明理由;
(3)若在三角板開始轉(zhuǎn)動的同時,射線OC也繞O點以每秒15°的速度逆時針旋轉(zhuǎn)一周,從旋轉(zhuǎn)開始多長時間,射線OC平分∠BOD.直接寫出t的值.(本題中的角均為大于0°且小于180°的角)
【答案】(1)∠BOC=70°;(2)存在,t=2,t=8或32;(3)或.
【解析】
(1)由圖可知∠BOC=∠AOB﹣∠AOC,∠AOC可利用角平分線及平角的定義求出.
(2)分OA平分∠COD,OC平分∠AOD,OD平分∠AOC三種情況分別進行討論,建立關于t的方程,解方程即可.
(3)分別用含t的代數(shù)式表示出∠COD和∠BOD,再根據(jù)OC平分∠BOD建立方程解方程即可,注意分情況討論.
(1)解:∵∠COE=140°,
∴∠COD=180°﹣∠COE=40°,
又∵OA平分∠COD,
∴∠AOC=∠COD=20°,
∵∠AOB=90°,
∴∠BOC=90°﹣∠AOC=70°;
(2)存在
①當OA平分∠COD時,∠AOD=∠AOC,即10°t=20°,解得:t=2;
②當OC平分∠AOD時,∠AOC=∠DOC,即10°t﹣40°=40°,解得:t=8;
③當OD平分∠AOC時,∠AOD=∠COD,即360°﹣10°t=40°,解得:t=32;
綜上所述:t=2,t=8或32;
(3)或,理由如下:
設運動時間為t,則有
①當90+10t=2(40+15t)時,t=
②當270﹣10t=2(320﹣15t)時,t=
所以t的值為或.
科目:初中數(shù)學 來源: 題型:
【題目】已知直線y=-x+2與x軸、y軸分別交于點A、C,拋物線y=-x2+bx+c過點A、C,且與x軸交于另一點B,在第一象限的拋物線上任取一點D,分別連接CD、AD,作于點E.
(1)求拋物線的表達式;
(2)求△ACD面積的最大值;
(3)若△CED與△COB相似,求點D的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有三張正面分別標有數(shù)字﹣3,1,3的不透明卡片,它們除數(shù)字外都相同,現(xiàn)將它們背面朝上,洗勻后從三張卡片中隨機地抽取一張,放回卡片洗勻后,再從三張卡片中隨機地抽取一張.
(1)試用列表或畫樹狀圖的方法,求兩次抽取的卡片上的數(shù)字之積為負數(shù)的概率;
(2)求兩次抽取的卡片上的數(shù)字之和為非負數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知線段AB=20,點C在BA的延長線上,點D在直線AB上,AC=12,BD=16,點M是線段CD的中點,則AM的長為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解本校九年級學生期末數(shù)學考試情況,小亮在九年級隨機抽取了一部分學生的期末數(shù)學成績?yōu)闃颖,分為A(100﹣90分)、B(89~80分)、C(79~60分)、D(59~0分)四個等級進行統(tǒng)計,并將統(tǒng)計結(jié)果繪制成如下統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答以下問題:
(1)這次隨機抽取的學生共有多少人?
(2)請補全條形統(tǒng)計圖;
(3)這個學校九年級共有學生1200人,若分數(shù)為80分(含80分)以上為優(yōu)秀,請估計這次九年級學生期末數(shù)學考試成績?yōu)閮?yōu)秀的學生人數(shù)大約有多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O是△ABC外接圓,直徑AB=12,∠A=2∠B.
(1)∠A= °,∠B= °;
(2)求BC的長(結(jié)果用根號表示);
(3)連接OC并延長到點P,使CP=OC,連接PA,畫出圖形,求證:PA是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y=的圖象交于點A(﹣3,m+8),B(n,﹣6)兩點.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求△AOB的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com