在梯形ABCD中,ABCD,DC:AB=1:2,E、F分別是兩腰BC、AD的中點(diǎn),則EF:AB等于(  )
A.1:4B.1:3C.1:2D.3:4
∵DC:AB=1:2,
∴設(shè)DC=x,AB=2x,
∵E、F分別是兩腰BC、AD的中點(diǎn),
∴EF=
1
2
(AB+CD)=
1
2
(2x+x)=
3
2
x,
∴EF:AB=
3
2
x:2x=3:4.
故選D.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

有一塊四邊形的地ABCD(如圖所示),測(cè)得AB=26m,BC=10m,CD=5m,頂點(diǎn)B,C到AD的距離分別為10m,4m,則這塊地的面積為______m2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

若等腰梯形的上底、高、下底分別為2cm、2cm、6cm,則這個(gè)等腰梯形中的銳角等于______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知在梯形ABCD中,ADBC,AB=CD,∠B=60°,AD=3cm,梯形ABCD的周長為18cm,則BC的長為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在四邊形ABCD中,ADBC,AD≠BC,要使它成為等腰梯形,還需添加一個(gè)條件,這個(gè)條件可以是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在梯形ABCD中,ADBC,∠B=90°,AB=14cm,AD=15cm,BC=21cm,點(diǎn)M從A點(diǎn)開始,沿AD邊向D運(yùn)動(dòng),速度為1厘米/秒,點(diǎn)N從點(diǎn)C開始沿CB邊向點(diǎn)B運(yùn)動(dòng),速度為2厘米/秒,設(shè)四邊形MNCD的面積為S.
(1)寫出面積S與時(shí)間t之間的函數(shù)關(guān)系式;
(2)當(dāng)t為何值時(shí),四邊形MNCD是平行四邊形?
(3)當(dāng)t為何值時(shí),四邊形MNCD是等腰梯形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,等腰梯形AOBC的四個(gè)頂點(diǎn)坐標(biāo)分別為A(2,2
3
),O(0,0),B(8,0),C(6,2
3
).
(1)求等腰梯形AOBC的面積;
(2)試說明點(diǎn)A在以O(shè)B的中點(diǎn)D為圓心,OB為直徑的圓上;
(3)在第一象限內(nèi)確定點(diǎn)M,使△MOB與△AOB相似,求出所有符合條件的點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,AB、CD是兩條線段,M是AB的中點(diǎn),S△DMC、S△DAC、S△DBC分別表示△DMC、△DAC、△DBC的面積.當(dāng)ABCD時(shí),則有S△DMC=
S△DAC+S△DBC
2

(1)如圖2,M是AB的中點(diǎn),AB與CD不平行時(shí),作AE、MN、BF分別垂直DC于E、N、F三個(gè)點(diǎn),問結(jié)論①是否仍然成立?請(qǐng)說明理由.
(2)若圖3中,AB與CD相交于點(diǎn)O時(shí),問S△DMC、S△DAC和S△DBC三者之間存在何種相等關(guān)系?試證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖(1),直角梯形OABC中,∠A=90°,ABCO,且AB=2,OA=2
3
,∠BCO=60°.
(1)求證:△OBC為等邊三角形;
(2)如圖(2),OH⊥BC于點(diǎn)H,動(dòng)點(diǎn)P從點(diǎn)H出發(fā),沿線段HO向點(diǎn)O運(yùn)動(dòng),動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),沿線段OA向點(diǎn)A運(yùn)動(dòng),兩點(diǎn)同時(shí)出發(fā),速度都為1/秒.設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒,△OPQ的面積為S,求S與t之間的函數(shù)關(guān)系式,并求出t的取值范圍;
(3)設(shè)PQ與OB交于點(diǎn)M,當(dāng)OM=PM時(shí),求t的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案