已知:如圖,∠ACB=∠BDA=90°,要使△ACB≌△BDA,請?zhí)砑右粋條件是   
【答案】分析:要使△ACB≌△BDA,已知∠ACB=∠BDA=90°,AB=BA,則可以添加AC=BD或BC=AD利用HL判定;或添加∠ABC=∠BAD或∠CAB=∠DBA利用AAS判定.
解答:解:∵∠ACB=∠BDA=90°,AB=BA,
∴可以添加AC=BD或BC=AD利用HL判定;
添加∠ABC=∠BAD或∠CAB=∠DBA利用AAS判定.
故填空答案為:AC=BD或BC=AD或∠ABC=∠BAD或∠CAB=∠DBA.
點評:本題考查三角形全等的判定方法;判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加時注意:AAA、SSA不能判定兩個三角形全等,不能添加,根據(jù)已知結合圖形及判定方法選擇條件是正確解答本題的關健.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

14、已知:如圖,∠ACB=∠DBC,要使△ABC≌△DCB,只需增加的一個條件是
∠A=∠D或∠ABC=∠DCB或BD=AC
(只需填寫一個你認為適合的條件).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網已知:如圖,∠ACB=90°,以AC為直徑的⊙O交AB于D點,過D作⊙O的切線交BC于E點,EF⊥AB于F點,連OE交DC于P,則下列結論,其中正確的有( 。
①BC=2DE;     ②OE∥AB;   ③DE=
2
PD;    ④AC•DF=DE•CD.
A、①②③B、①③④
C、①②④D、①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

36、已知:如圖,∠ACB=90°,D、E是AB上的兩點,且AE=AC,BD=BC,EF⊥CD于F,
求證:CF=EF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網已知:如圖,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,點D在AB上.
求證:BD=AE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網已知:如圖,∠ACB=90°,AC=BC,AD=BE,∠CAD=∠CBE.
(1)判斷△DCE的形狀,并說明你的理由;
(2)當BD:CD=1:2時,∠BDC=135°時,求sin∠BED的值.

查看答案和解析>>

同步練習冊答案