如圖,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC=20cm,則△DEB的周長(zhǎng)為
20
20
cm.
分析:先根據(jù)ASA判定△ACD≌△ECD得出AC=EC,AD=ED,再將其代入△DEB的周長(zhǎng)中,通過(guò)邊長(zhǎng)之間的轉(zhuǎn)換得到,周長(zhǎng)=BD+DE+EB=BD+AD+EB=AB+BE=AC+EB=CE+EB=BC,所以為20cm.
解答:解:∵CD平分∠ACB
∴∠ACD=∠ECD
∵DE⊥BC于E,
∴∠DEC=∠A=90°
在△ACD與△ECD中,
∠ACD=∠ECD
CD=CD
∠DEC=∠A
,
∴△ACD≌△ECD(ASA),
∴AC=EC,AD=ED,
∵∠A=90°,AB=AC,
∴∠B=45°
∴BE=DE
∴△DEB的周長(zhǎng)為:DE+BE+BD=AD+BD+BE=AB+BE=AC+BE=EC+BE=BC=20cm.
故答案為:20.
點(diǎn)評(píng):本題考查三角形全等的判定方法,判定兩個(gè)三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.
注意:AAA、SSA不能判定兩個(gè)三角形全等,判定兩個(gè)三角形全等時(shí),必須有邊的參與,若有兩邊一角對(duì)應(yīng)相等時(shí),角必須是兩邊的夾角.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

23、如圖,已知在△ABC中,AD、AE分別是BC邊上的高和中線(xiàn),AB=9cm,AC=7cm,BC=8m,求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知在△ABC中,BD為∠ABC的平分線(xiàn),AB=BC,點(diǎn)P在BD上,PM⊥AD于M,PN⊥CD于N,求證:PM=PN.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知在△ABC中,AB=AC,∠A=100°,CD是∠ACB的平分線(xiàn).
(1)∠ADC=
60°
60°

(2)求證:BC=CD+AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知在△ABC中,∠B與∠C的平分線(xiàn)交于點(diǎn)P.當(dāng)∠A=70°時(shí),則∠BPC的度數(shù)為
125°
125°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知在△ABC中,CD=CE,∠A=∠ECB,試說(shuō)明CD2=AD•BE.

查看答案和解析>>

同步練習(xí)冊(cè)答案