如圖,點(diǎn)D、E在△ABC的邊BC上,AB=AC,AD=AE,AF是△ABC的高.

求證:BD=CE.

答案:
解析:

  分析:因?yàn)椤鰽BC與△ADE有公共頂點(diǎn),并且是底邊在同一直線上的等腰三角形,AF同時(shí)是兩個(gè)等腰三角形的高,根據(jù)等腰三角形“三線合一”的性質(zhì)可以證明BD=CE.

  證明:因?yàn)锳B=AC,AD=AE,AF⊥BC,

  所以BF=CF,DF=EF.

  所以BF-DF=CF-EF,即BD=CE.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

7、如圖,點(diǎn)B、C在線段AD上,M是AB的中點(diǎn),N是CD的中點(diǎn),若MN=a,BC=b,則AD的長(zhǎng)是
2a-b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)A、B在線段MN上,若MA=AB=BN,則稱A、B都為線段MN上的三等分點(diǎn).則角的三等分線可以照此定義.精英家教網(wǎng)
(1)若線段MN=9厘米,E是線段MN上的三等分點(diǎn),那么線段ME為幾厘米?
(2)在∠MON中,射線OA是∠MON的三等分線,OB是∠MOA的三等分線,設(shè)∠MOB=x,畫出圖形,并用含x的代數(shù)式表示∠MON.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,點(diǎn)E、F在BC上,AB=DC,∠B=∠C,∠A=∠D,
求證:BE=CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知△ABD和△BEP均為等腰直角△,∠BAD=∠BEP=90゜,點(diǎn)O為BD的中點(diǎn).
(1)如圖,點(diǎn)P、E分別在AB、BD上,求證:AP=
2
OE;
(2)將圖1中的△BPE繞B點(diǎn)順時(shí)針旋轉(zhuǎn)45゜,問(1)中的結(jié)論是否成立?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,點(diǎn)C、D在線段AB上,且C為AB的一個(gè)四等分點(diǎn),D為AC中點(diǎn),若BC=2,則BD的長(zhǎng)為
5
5

查看答案和解析>>

同步練習(xí)冊(cè)答案