【題目】如圖,在矩形OABC中,OA5OC4,FAB上的一個動點(diǎn)(F不與A,B重合),過點(diǎn)F的反比例函數(shù)yk0)的圖象與BC邊交于點(diǎn)E

1)當(dāng)FAB的中點(diǎn)時,求該函數(shù)的表達(dá)式;

2)當(dāng)k為何值時,△EFA的面積最大,最大面積是多少?

【答案】1y;(2)當(dāng)k10時,SEFA有最大值,S最大值

【解析】

1)當(dāng)FAB的中點(diǎn)時,點(diǎn)F的坐標(biāo)為(5,2),由此代入求得函數(shù)解析式即可;

2)根據(jù)圖中的點(diǎn)的坐標(biāo)表示出三角形的面積,得到關(guān)于k的二次函數(shù),利用二次函數(shù)求出最值即可.

解:(1)∵在矩形OABC中,OA5OC4,

B54),

FAB的中點(diǎn),

F5,2),

∵點(diǎn)F在反比例函數(shù)y的圖象上,

k10,

∴該函數(shù)的解析式為y;

2)由題意知E,F兩點(diǎn)坐標(biāo)分別為E,4),F5),

SEFAAFBE×5-)=-k2+-k102+

∴當(dāng)k10時,SEFA有最大值,S最大值

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店購買60A商品和30B商品共用了1080元,購買50A商品和20B商品共用了880元.

1A、B兩種商品的單價分別是多少元?

2)已知該商店購買A、B兩種商品共30件,要求購買B商品的數(shù)量不高于A商品數(shù)量的2倍,且該商店購買的A、B兩種商品的總費(fèi)用不超過276元,那么該商店有幾種購買方案?

3)若購買A種商品m件,實(shí)際購買時A種商品下降了aa0)元,B種商品上漲了3a元,在(2)的條件下,此時購買這兩種商品所需的最少費(fèi)用為1076元,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=x + x+3與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B左側(cè)),與y軸交于點(diǎn)C,拋物線的頂點(diǎn)為點(diǎn)E.

(1)判斷△ABC的形狀,并說明理由;

(2)經(jīng)過B. C兩點(diǎn)的直線交拋物線的對稱軸于點(diǎn)D,求D點(diǎn)的坐標(biāo)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,∠BAD的平分線交BC于點(diǎn)E,交DC的延長線于點(diǎn)F

(1)AB4,BC6,求EC的長;

(2)若∠EAD50°,求∠BAE和∠D的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABCD中,已知AD10cm,tanB2,AEBC于點(diǎn)E,且AE4cm,點(diǎn)PBC邊上一動點(diǎn).若△PAD為直角三角形,則BP的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,∠BMF+CNF90°,E、F分別是AD、BC的中點(diǎn),AB5,CD12,則EF_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某公司為了擴(kuò)大經(jīng)營,決定購進(jìn)6臺機(jī)器用于生產(chǎn)某活塞.現(xiàn)有甲、乙兩種機(jī)器供選擇,其中每種機(jī)器的價格和每臺機(jī)器日生產(chǎn)活塞的數(shù)量如下表所示.經(jīng)過預(yù)算,本次購買機(jī)器所耗資金不能超過34萬元.

價格(萬元/)

7

5

每臺日產(chǎn)量()

100

60

(1)按該公司要求可以有幾種購買方案?

(2)如果該公司購進(jìn)的6臺機(jī)器的日生產(chǎn)能力不能低于380個,那么為了節(jié)約資金應(yīng)選擇什么樣的購買方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2011山東濟(jì)南,27,9分)如圖,矩形OABC中,點(diǎn)O為原點(diǎn),點(diǎn)A的坐標(biāo)為(08),點(diǎn)C的坐標(biāo)為(60).拋物線經(jīng)過A、C兩點(diǎn),與AB邊交于點(diǎn)D

1)求拋物線的函數(shù)表達(dá)式;

2)點(diǎn)P為線段BC上一個動點(diǎn)(不與點(diǎn)C重合),點(diǎn)Q為線段AC上一個動點(diǎn),AQ=CP,連接PQ,設(shè)CP=m,△CPQ的面積為S

S關(guān)于m的函數(shù)表達(dá)式,并求出m為何值時,S取得最大值;

當(dāng)S最大時,在拋物線的對稱軸l上若存在點(diǎn)F,使△FDQ為直角三角形,請直接寫出所有符合條件的F的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知Rt△ABC中,∠B=90°,∠A=60°,AB=3,點(diǎn)M,N分別在線段AC,AB上,將△ANM沿直線MN折疊,使點(diǎn)A的對應(yīng)點(diǎn)D恰好落在線段BC上,若△DCM為直角三角形時,則AM的長為_____

查看答案和解析>>

同步練習(xí)冊答案