【題目】如圖,拋物線y=-x2+2x+3與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸相交于點(diǎn)C,頂點(diǎn)為D.
(1)求出A、B、C三點(diǎn)的坐標(biāo)和拋物線的對(duì)稱軸;
(2)連接BC,與拋物線的對(duì)稱軸交于點(diǎn)E,點(diǎn)P為線段BC上的一個(gè)動(dòng)點(diǎn),過點(diǎn)P作PF∥DE交拋物線于點(diǎn)F,設(shè)點(diǎn)P的橫坐標(biāo)為m;
①用含m的代數(shù)式表示線段PF的長(zhǎng),并求出當(dāng)m為何值時(shí),四邊形PEDF為平行四邊形?
②設(shè)△BCF的面積為S,求S與m的函數(shù)關(guān)系式,S是否有最大值?如有,請(qǐng)求出最大值,沒有請(qǐng)說明理由.
【答案】(1)A(﹣1,0),B(3,0),C(0,3),拋物線對(duì)稱軸為直線x=1;(2)見解析
【解析】
試題(1)對(duì)于拋物線解析式,令y=0求出x的值,確定出A與B坐標(biāo),令x=0求出y的值確定出C的做準(zhǔn)備,進(jìn)而求出對(duì)稱軸即可;(2)①根據(jù)B與C坐標(biāo),利用待定系數(shù)法確定出直線BC解析式,進(jìn)而表示出E與P坐標(biāo),根據(jù)拋物線解析式確定出D與F坐標(biāo),表示出PF,利用平行四邊形的判定方法確定出m的值即可;②連接BF,設(shè)直線PF與x軸交于點(diǎn)M,求出OB的長(zhǎng),三角形BCF面積等于三角形BFP面積加上三角形CFP面積,列出S關(guān)于m的二次函數(shù)解析式,利用二次函數(shù)性質(zhì)確定出S取得最大值時(shí)m的值即可.
試題解析:(1)對(duì)于拋物線y=﹣x2+2x+3,
令x=0,得到y=3;
令y=0,得到﹣x2+2x+3=0,即(x﹣3)(x+1)=0,
解得:x=﹣1或x=3,
則A(﹣1,0),B(3,0),C(0,3),拋物線對(duì)稱軸為直線x=1;
(2)①設(shè)直線BC的函數(shù)解析式為y=kx+b,
把B(3,0),C(0,3)分別代入得:,
解得:k=﹣1,b=3,
∴直線BC的解析式為y=﹣x+3,
當(dāng)x=1時(shí),y=﹣1+3=2,
∴E(1,2),
當(dāng)x=m時(shí),y=﹣m+3,
∴P(m,﹣m+3),
令y=﹣x2+2x+3中x=1,得到y=4,
∴D(1,4),
當(dāng)x=m時(shí),y=﹣m2+2m+3,
∴F(m,﹣m2+2m+3),
∴線段DE=4﹣2=2,
∵0<m<3,
∴yF>yP,
∴線段PF=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m,
連接DF,由PF∥DE,得到當(dāng)PF=DE時(shí),四邊形PEDF為平行四邊形,
由﹣m2+3m=2,得到m=2或m=1(不合題意,舍去),
則當(dāng)m=2時(shí),四邊形PEDF為平行四邊形;
②連接BF,設(shè)直線PF與x軸交于點(diǎn)M,由B(3,0),O(0,0),可得OB=OM+MB=3,
∵S=S△BPF+S△CPF=PFBM+PFOM=PF(BM+OM)=PFOB,
∴S=×3(﹣m2+3m)=﹣m2+m(0<m<3),
則當(dāng)m=時(shí),S取得最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,點(diǎn)E是AB邊的中點(diǎn),DE與CB的延長(zhǎng)線交于點(diǎn)F.
(1)求證:△ADE≌△BFE;
(2)若DF平分∠ADC,連接CE.試判斷CE和DF的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,,點(diǎn)是線段上一動(dòng)點(diǎn)(不與,重合).
(1)如圖1,當(dāng)點(diǎn)為的中點(diǎn),過點(diǎn)作交的延長(zhǎng)線于點(diǎn),求證:;
(2)連接,作,交于點(diǎn).若時(shí),如圖2.
①______;
②求證:為等腰三角形;
(3)連接CD,∠CDE=30°,在點(diǎn)的運(yùn)動(dòng)過程中,的形狀可以是等腰三角形嗎?若可以,請(qǐng)求出的度數(shù);若不可以,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在中,,,,可以由繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到,其中點(diǎn)與點(diǎn)是對(duì)應(yīng)點(diǎn),點(diǎn)與點(diǎn)是對(duì)應(yīng)點(diǎn),連接,且、、在同一條直線上,則的長(zhǎng)為( )
A.6B.C.D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個(gè)長(zhǎng)為15m的梯子斜靠在墻上,梯子的頂端距地面的距離為12m,
①如果梯子的頂端下滑了1m,那么梯子的底端也向后滑動(dòng)1m嗎?請(qǐng)通過計(jì)算解答.
②梯子的頂端從A處沿墻AO下滑的距離與點(diǎn)B向外移動(dòng)的距離有可能相等嗎?若有可能,請(qǐng)求出這個(gè)距離,沒有可能請(qǐng)說明理由.
③若將上題中的梯子換成15米長(zhǎng)的直木棒,將木棒緊靠墻豎直放置然后開始下滑直至直木棒的頂端A滑至墻角O處,試求出木棒的中點(diǎn)Q滑動(dòng)的路徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的面積為16,△ABE是等邊三角形,點(diǎn)E在正方形ABCD內(nèi),在對(duì)角線BD上有一點(diǎn)P,使PC+PE的和最小,則這個(gè)最小值為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到△EDC.若點(diǎn)A,D,E在同一條直線上,∠ACB=20°,則∠ADC的度數(shù)是( )
A. 55° B. 60° C. 65° D. 70°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】跳遠(yuǎn)運(yùn)動(dòng)員李陽對(duì)訓(xùn)練效果進(jìn)行測(cè)試.6次跳遠(yuǎn)的成績(jī)?nèi)缦拢?/span>7.5,7.7,7.6,7.7,7.9,7.8(單位:m)這六次成績(jī)的平均數(shù)為7.7m,方差為.如果李陽再跳一次,成績(jī)?yōu)?/span>7.7m.則李陽這7次跳遠(yuǎn)成績(jī)的方差_____(填“變大”、“不變”或“變小”).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線與軸,軸分別交于,兩點(diǎn),以為直角頂點(diǎn)在第二象限作等腰.
(1)求點(diǎn)的坐標(biāo),并求出直線的關(guān)系式;
(2)如圖,直線交軸于,在直線上取一點(diǎn),連接,若,求證:.
(3)如圖,在(1)的條件下,直線交軸于點(diǎn),是線段上一點(diǎn),在軸上是否存在一點(diǎn),使面積等于面積的一半?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com